%'phys_polar': transforms image (Unit='pixel') to polar (phys) coordinates using geometric calibration parameters %------------------------------------------------------------------------ %%%% Use the general syntax for transform fields %%%% % OUTPUT: % Data: output field structure % .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components % %INPUT: % DataIn: first input field structure % XmlData: first input parameter structure, % .GeometryCalib: substructure of the calibration parameters % DataIn_1: optional second input field structure % XmlData_1: optional second input parameter structure % .GeometryCalib: substructure of the calibration parameters % transform image coordinates (px) to polar physical coordinates %[Data,Data_1]=phys_polar(varargin) % % OUTPUT: % Data: structure of modified data field: .X=radius, .Y=azimuth angle, .U, .V are radial and azimuthal velocity components % Data_1: second data field (if two fields are in input) % %INPUT: % Data: structure of input data (like UvData) % XmlData= structure containing the field .GeometryCalib with calibration parameters % Data_1: second input field (not mandatory) % XmlData_1= calibration parameters for the second field %======================================================================= % Copyright 2008-2021, LEGI UMR 5519 / CNRS UGA G-INP, Grenoble, France % http://www.legi.grenoble-inp.fr % Joel.Sommeria - Joel.Sommeria (A) legi.cnrs.fr % % This file is part of the toolbox UVMAT. % % UVMAT is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published % by the Free Software Foundation; either version 2 of the license, % or (at your option) any later version. % % UVMAT is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License (see LICENSE.txt) for more details. %======================================================================= function Data=phys_polar(DataIn,XmlData,DataIn_1,XmlData_1) %------------------------------------------------------------------------ %% request input parameters if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0) prompt = {'origin [x y] of polar coordinates';'reference radius';'reference angle(degrees)';'angle direction and switch x y(+/-)'}; dlg_title = 'set the parameters for the polar coordinates'; num_lines= 2; def = { '[0 0]';'0';'0';'+'}; if isfield(XmlData,'TransformInput') if isfield(XmlData.TransformInput,'PolarCentre') def{1}=num2str(XmlData.TransformInput.PolarCentre); end if isfield(XmlData.TransformInput,'PolarReferenceRadius') def{2}=num2str(XmlData.TransformInput.PolarReferenceRadius); end if isfield(XmlData.TransformInput,'PolarReferenceAngle') def{3}=num2str(XmlData.TransformInput.PolarReferenceAngle); end if isfield(XmlData.TransformInput,'PolarAngleDirection') def{4}=XmlData.TransformInput.PolarAngleDirection; end end answer = inputdlg(prompt,dlg_title,num_lines,def); Data.TransformInput.PolarCentre=str2num(answer{1}); Data.TransformInput.PolarReferenceRadius=str2num(answer{2}); Data.TransformInput.PolarReferenceAngle=str2num(answer{3}); Data.TransformInput.PolarAngleDirection=answer{4}; return end %% default outputs Data=DataIn; %default output if isfield(Data,'CoordUnit') Data=rmfield(Data,'CoordUnit'); end Data.ListVarName = {}; Data.VarDimName={}; Data.VarAttribute={}; DataCell{1}=DataIn; Calib{1}=[]; DataCell{2}=[];%default checkpixel(1)=0; if isfield(DataCell{1},'CoorUnit')&& strcmp(DataCell{1}.CoorUnit,'px') checkpixel(1)=1; end if nargin==2||nargin==4 if isfield(XmlData,'GeometryCalib') && ~isempty(XmlData.GeometryCalib)&& checkpixel(1) Calib{1}=XmlData.GeometryCalib; end Calib{2}=Calib{1}; else Data.Txt='wrong input: need two or four structures'; end nbinput=1; if nargin==4% case of two input fields checkpixel(2)=0; if isfield(DataCell{2},'CoorUnit')&& strcmp(DataCell{2}.CoorUnit,'px') checkpixel(2)=1; end DataCell{2}=DataIn_1;%default if isfield(XmlData_1,'GeometryCalib')&& ~isempty(XmlData_1.GeometryCalib) && checkpixel(2) Calib{2}=XmlData_1.GeometryCalib; end nbinput=2; end %% parameters for polar coordinates (taken from the calibration data of the first field) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% origin_xy=[0 0];%center for the polar coordinates in the original x,y coordinates radius_offset=0;%reference radius used to offset the radial coordinate r angle_offset=0; %reference angle used as new origin of the polar angle (= axis Ox by default) angle_scale=180/pi; check_degree=1;%angle expressed in degrees by default if isfield(XmlData,'TransformInput') if isfield(XmlData.TransformInput,'PolarCentre') && isnumeric(XmlData.TransformInput.PolarCentre) if isequal(length(XmlData.TransformInput.PolarCentre),2) origin_xy= XmlData.TransformInput.PolarCentre; end end if isfield(XmlData.TransformInput,'PolarReferenceRadius') && isnumeric(XmlData.TransformInput.PolarReferenceRadius) radius_offset=XmlData.TransformInput.PolarReferenceRadius; end if radius_offset > 0 angle_scale=radius_offset; %the azimuth is rescale in terms of the length along the reference radius check_degree=0; %the output has the same unit asthe input else angle_scale=180/pi; %polar angle in degrees check_degree=1;%angle expressed in degrees end if isfield(XmlData.TransformInput,'PolarReferenceAngle') && isnumeric(XmlData.TransformInput.PolarReferenceAngle) angle_offset=(pi/180)*XmlData.TransformInput.PolarReferenceAngle; %offset angle (in unit of the final angle, degrees or arc length along the reference radius)) end check_reverse=isfield(XmlData.TransformInput,'PolarAngleDirection')&& strcmp(XmlData.TransformInput.PolarAngleDirection,'-'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% get fields nbvar=0;%counter for the number of output variables nbcoord=0;%counter for the number of variables for radial coordiantes (case of multiple field inputs) nbgrid=0;%counter for the number of gridded fields (all linearly interpolated on the same output polar grid) nbscattered=0;%counter of scattered fields radius_name='radius'; theta_name='theta'; U_r_name='U_r'; U_theta_name='U_theta'; for ifield=1:nbinput %1 or 2 input fields [CellInfo,NbDim,errormsg]=find_field_cells(DataCell{ifield}); if ~isempty(errormsg) Data.Txt=['bad input to phys_polar: ' errormsg]; return end % end %transform of X,Y coordinates for vector fields if isfield(DataCell{ifield},'ZIndex')&& ~isempty(DataCell{ifield}.ZIndex) ZIndex=DataCell{ifield}.ZIndex; else ZIndex=0; end check_scalar=zeros(1,numel(CellInfo)); check_vector=zeros(1,numel(CellInfo)); for icell=1:numel(CellInfo) if NbDim(icell)==2 % case of input field with scattered coordinates if strcmp(CellInfo{icell}.CoordType,'scattered') nbscattered=nbscattered+1; nbcoord=nbcoord+1; radius_name = rename_indexing(radius_name,Data.ListVarName); theta_name = rename_indexing(theta_name,Data.ListVarName); Data.ListVarName = [Data.ListVarName {radius_name} {theta_name}]; dim_name = rename_indexing('nb_point',Data.VarDimName); Data.VarDimName=[Data.VarDimName {dim_name} {dim_name}]; nbvar=nbvar+2; Data.VarAttribute{nbvar-1}.Role='coord_x'; check_unit=1; if isfield(DataCell{ifield},'CoordUnit') Data=rmfield(Data,'CoordUnit'); Data.VarAttribute{nbvar-1}.unit=DataCell{ifield}.CoordUnit; elseif isfield(XmlData,'GeometryCalib')&& isfield(XmlData.GeometryCalib,'CoordUnit') Data.VarAttribute{nbvar-1}.unit=XmlData.GeometryCalib.CoordUnit;% states that the output is in unit defined by GeometryCalib, then erased all projection objects with different units else check_unit=0; end Data.VarAttribute{nbvar}.Role='coord_y'; if check_degree Data.VarAttribute{nbvar}.unit='degree'; elseif check_unit Data.VarAttribute{nbvar}.unit=Data.VarAttribute{nbvar-1}.unit; end %transform u,v into polar coordinates X=DataCell{ifield}.(CellInfo{icell}.XName); Y=DataCell{ifield}.(CellInfo{icell}.YName); if isfield(CellInfo{icell},'VarIndex_vector_x')&& isfield(CellInfo{icell},'VarIndex_vector_y') UName=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_vector_x}; VName=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_vector_y}; if ~isempty(Calib{ifield}) [X,Y,Z,DataCell{ifield}.(UName),DataCell{ifield}.(VName)]=... phys_XYUV(DataCell{ifield},Calib{ifield},ZIndex); end end [Theta,Radius] = cart2pol(X-origin_xy(1),Y-origin_xy(2)); Data.(radius_name)=Radius-radius_offset; Data.(theta_name)=Theta*angle_scale-angle_offset; if Z~=0 Data.Z=Z; nbvar=nbvar+1; Data.ListVarName = [Data.ListVarName {'Z'}]; Data.VarDimName=[Data.VarDimName {dim_name}]; Data.VarAttribute{nbvar}.Role='coord_z'; end if isfield(CellInfo{icell},'VarIndex_scalar') ScalarName=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_scalar}; ScalarName=rename_indexing(ScalarName,Data.ListVarName); Data.(ScalarName)=DataCell{ifield}.(ScalarName); nbvar=nbvar+1; Data.ListVarName = [Data.ListVarName {ScalarName}]; Data.VarDimName=[Data.VarDimName {dim_name}]; Data.VarAttribute{nbvar}.Role='scalar'; end if isfield(CellInfo{icell},'VarIndex_vector_x')&& isfield(CellInfo{icell},'VarIndex_vector_y') U_r_name= rename_indexing(U_r_name,Data.ListVarName); U_theta_name= rename_indexing(U_theta_name,Data.ListVarName); Data.(U_r_name)=DataCell{ifield}.(UName).*cos(Theta)+DataCell{ifield}.(VName).*sin(Theta);%radial velocity Data.(U_theta_name)=(-DataCell{ifield}.(UName).*sin(Theta)+DataCell{ifield}.(VName).*cos(Theta));%./(Data.X)%+radius_ref);% azimuthal velocity component Data.ListVarName = [Data.ListVarName {U_r_name} {U_theta_name}]; Data.VarDimName=[Data.VarDimName {dim_name} {dim_name}]; Data.VarAttribute{nbvar+1}.Role='vector_x'; Data.VarAttribute{nbvar+2}.Role='vector_y'; nbvar=nbvar+2; end if isfield(CellInfo{icell},'VarIndex_errorflag') error_flag_name=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_errorflag}; error_flag_newname= rename_indexing(error_flag_name,Data.ListVarName); Data.(error_flag_newname)=DataCell{ifield}.(error_flag_name); Data.ListVarName = [Data.ListVarName {error_flag_newname}]; Data.VarDimName=[Data.VarDimName {dim_name}]; nbvar=nbvar+1; Data.VarAttribute{nbvar}.Role='errorflag'; end %caseof input fields on gridded coordinates (matrix) elseif strcmp(CellInfo{icell}.CoordType,'grid') if nbgrid==0% no gridded data yet, introduce the coordinate variables common to all gridded data nbcoord=nbcoord+1;%add new radial coordinates for the first gridded field radius_name = rename_indexing(radius_name,Data.ListVarName); theta_name = rename_indexing(theta_name,Data.ListVarName); Data.ListVarName = [Data.ListVarName {radius_name} {theta_name}]; Data.VarDimName=[Data.VarDimName {radius_name} {theta_name}]; nbvar=nbvar+2; if check_reverse Data.VarAttribute{nbvar-1}.Role='coord_y'; Data.VarAttribute{nbvar}.Role='coord_x'; else Data.VarAttribute{nbvar-1}.Role='coord_x'; Data.VarAttribute{nbvar}.Role='coord_y'; end check_unit=1; if isfield(DataCell{ifield},'CoordUnit') Data.VarAttribute{nbvar-1}.unit=DataCell{ifield}.CoordUnit; elseif isfield(XmlData,'GeometryCalib')&& isfield(XmlData.GeometryCalib,'CoordUnit') Data.VarAttribute{nbvar-1}.unit=XmlData.GeometryCalib.CoordUnit;% states that the output is in unit defined by GeometryCalib, then erased all projection objects with different units else check_unit=0; end if check_degree Data.VarAttribute{nbvar}.unit='degree'; elseif check_unit Data.VarAttribute{nbvar}.unit=Data.VarAttribute{nbvar-1}.unit; end end if isfield(CellInfo{icell},'VarIndex_scalar') nbgrid=nbgrid+1; nbvar=nbvar+1; Data.VarAttribute{nbvar}.Role='scalar'; FieldName{nbgrid}=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_scalar}; A{nbgrid}=DataCell{ifield}.(FieldName{nbgrid}); % Data.ListVarName=[Data.ListVarName {FieldName{nbgrid}}]; % Data.VarDimName=[Data.VarDimName {{theta_name,radius_name}}]; nbpoint(nbgrid)=numel(A{nbgrid}); check_scalar(nbgrid)=1; coord_x{nbgrid}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.XIndex}); coord_y{nbgrid}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.YIndex}); ZInd(nbgrid)=ZIndex; Calib_new{nbgrid}=Calib{ifield}; end if isfield(CellInfo{icell},'VarIndex_vector_x')&& isfield(CellInfo{icell},'VarIndex_vector_y') FieldName{nbgrid+1}=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_vector_x}; FieldName{nbgrid+2}=DataCell{ifield}.ListVarName{CellInfo{icell}.VarIndex_vector_y}; A{nbgrid+1}=DataCell{ifield}.(FieldName{nbgrid+1}); A{nbgrid+2}=DataCell{ifield}.(FieldName{nbgrid+2}); % Data.ListVarName=[Data.ListVarName {'U_r','U_theta'}]; %Data.VarDimName=[Data.VarDimName {{theta_name,radius_name}} {{theta_name,radius_name}}]; Data.VarAttribute{nbvar+1}.Role='vector_x'; Data.VarAttribute{nbvar+2}.Role='vector_y'; nbpoint([nbgrid+1 nbgrid+2])=numel(A{nbgrid+1}); check_vector(nbgrid+1)=1; check_vector(nbgrid+2)=1; coord_x{nbgrid+1}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.XIndex}); coord_y{nbgrid+1}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.YIndex}); coord_x{nbgrid+2}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.XIndex}); coord_y{nbgrid+2}=DataCell{ifield}.(DataCell{ifield}.ListVarName{CellInfo{icell}.YIndex}); ZInd(nbgrid+1)=ZIndex; ZInd(nbgrid+2)=ZIndex; Calib_new{nbgrid+1}=Calib{ifield}; Calib_new{nbgrid+2}=Calib{ifield}; nbgrid=nbgrid+2; nbvar=nbvar+2; end end end end end %% tranform cartesian to polar coordinates for gridded data if nbgrid~=0 [A,Data.radius,Data.theta]=phys_Ima_polar(A,coord_x,coord_y,Calib_new,ZInd,origin_xy,radius_offset,angle_offset,angle_scale); for icell=1:numel(A) if icell<=numel(A)-1 && check_vector(icell)==1 && check_vector(icell+1)==1 %transform u,v into polar coordinates theta=Data.theta/angle_scale-angle_offset; [~,Theta]=meshgrid(Data.radius,theta);%grid in physical coordinates U_r_name= rename_indexing(U_r_name,Data.ListVarName); U_theta_name= rename_indexing(U_theta_name,Data.ListVarName); Data.(U_r_name)=A{icell}.*cos(Theta)+A{icell+1}.*sin(Theta);%radial velocity Data.(U_theta_name)=(-A{icell}.*sin(Theta)+A{icell+1}.*cos(Theta));% azimuthal velocity component if check_reverse Data.(U_theta_name)=(Data.(U_theta_name))'; Data.(U_r_name)=Data.(U_r_name)'; Data.ListVarName=[Data.ListVarName {U_theta_name,U_r_name}]; Data.VarDimName=[Data.VarDimName {{radius_name,theta_name}} {{radius_name,theta_name}}]; else Data.ListVarName=[Data.ListVarName {U_r_name,U_theta_name}]; Data.VarDimName=[Data.VarDimName {{theta_name,radius_name}} {{theta_name,radius_name}}]; end elseif ~check_vector(icell)% for scalar fields FieldName{icell}= rename_indexing(FieldName{icell},Data.ListVarName); Data.ListVarName=[Data.ListVarName FieldName(icell)]; if check_reverse Data.(FieldName{icell})=A{icell}'; Data.VarDimName=[Data.VarDimName {{radius_name,theta_name}}]; else Data.VarDimName=[Data.VarDimName {{theta_name,radius_name}}]; Data.(FieldName{icell})=A{icell}; end end end end if check_reverse Data.(theta_name)=-Data.(theta_name); end %------------------------------------------------ %--- transform a single field into phys coordiantes function [X,Y,Z,U,V]=phys_XYUV(Data,Calib,ZIndex) %------------------------------------------------ %% set default output %DataOut=Data;%default %DataOut.CoordUnit=Calib.CoordUnit;% the output coord unit is set by the calibration parameters X=[];%default output Y=[]; Z=0; U=[]; V=[]; %% transform X,Y coordinates for velocity fields (transform of an image or scalar done in phys_ima) if isfield(Data,'X') &&isfield(Data,'Y')&&~isempty(Data.X) && ~isempty(Data.Y) [X,Y,Z]=phys_XYZ(Calib,Data.X,Data.Y,ZIndex); Dt=1; %default if isfield(Data,'dt')&&~isempty(Data.dt) Dt=Data.dt; end if isfield(Data,'Dt')&&~isempty(Data.Dt) Dt=Data.Dt; end if isfield(Data,'U')&&isfield(Data,'V')&&~isempty(Data.U) && ~isempty(Data.V) [XOut_1,YOut_1]=phys_XYZ(Calib,Data.X-Data.U/2,Data.Y-Data.V/2,ZIndex); [XOut_2,YOut_2]=phys_XYZ(Calib,Data.X+Data.U/2,Data.Y+Data.V/2,ZIndex); U=(XOut_2-XOut_1)/Dt; V=(YOut_2-YOut_1)/Dt; end end %%%%%%%%%%%%%%%%%%%% % tranform gridded field into polar coordiantes on a regular polar grid, % transform to phys coordiantes if requested by calibration input function [A_out,radius,theta]=phys_Ima_polar(A,coord_x,coord_y,CalibIn,ZIndex,origin_xy,radius_offset,angle_offset,angle_scale) rcorner=[]; thetacorner=[]; npx=[]; npy=[]; for icell=1:length(A) siz=size(A{icell}); npx(icell)=siz(2); npy(icell)=siz(1); x_edge=[linspace(coord_x{icell}(1),coord_x{icell}(end),npx(icell)) coord_x{icell}(end)*ones(1,npy(icell))... linspace(coord_x{icell}(end),coord_x{icell}(1),npx(icell)) coord_x{icell}(1)*ones(1,npy(icell))];%x coordinates of the image edge(four sides) y_edge=[coord_y{icell}(1)*ones(1,npx(icell)) linspace(coord_y{icell}(1),coord_y{icell}(end),npy(icell))... coord_y{icell}(end)*ones(1,npx(icell)) linspace(coord_y{icell}(end),coord_y{icell}(1),npy(icell))];%y coordinates of the image edge(four sides) % transform edges into phys coordinates if requested if ~isempty(CalibIn{icell}) [x_edge,y_edge]=phys_XYZ(CalibIn{icell},x_edge,y_edge,ZIndex(icell));% physical coordinates of the image edge end %transform the corner coordinates into polar ones x_edge=x_edge-origin_xy(1);%shift to the origin of the polar coordinates y_edge=y_edge-origin_xy(2);%shift to the origin of the polar coordinates [theta_edge,r_edge] = cart2pol(x_edge,y_edge);%theta and X are the polar coordinates angle and radius if (max(theta_edge)-min(theta_edge))>pi %if the polar origin is inside the image r_edge=[0 max(r_edge)]; theta_edge=[-pi pi]; end rcorner=[rcorner r_edge]; thetacorner=[thetacorner theta_edge]; end nbpoint=max(npx.*npy); Min_r=min(rcorner); Max_r=max(rcorner); Min_theta=min(thetacorner)*angle_scale; Max_theta=max(thetacorner)*angle_scale; Dr=round_uvmat((Max_r-Min_r)/sqrt(nbpoint)); Dtheta=round_uvmat((Max_theta-Min_theta)/sqrt(nbpoint));% get a simple mesh for the rescaled angle radius=Min_r:Dr:Max_r;% polar coordinates for projections theta=Min_theta:Dtheta:Max_theta; %theta=Max_theta:-Dtheta:Min_theta; [Radius,Theta]=meshgrid(radius,theta/angle_scale);%grid in polar coordinates (angles in radians) %transform X, Y in cartesian [X,Y] = pol2cart(Theta,Radius);% cartesian coordinates associated to the grid in polar coordinates X=X+origin_xy(1);%shift to the origin of the polar coordinates Y=Y+origin_xy(2);%shift to the origin of the polar coordinates radius=radius-radius_offset; theta=theta-angle_offset*angle_scale; [np_theta,np_r]=size(Radius); for icell=1:length(A) XIMA=X; YIMA=Y; if ~isempty(CalibIn{icell})%transform back to pixel if calibration parameters are introduced Z=0; %default if isfield(CalibIn{icell},'SliceCoord') %.Z= index of plane if ZIndex(icell)==0 ZIndex(icell)=1; end SliceCoord=CalibIn{icell}.SliceCoord(ZIndex(icell),:); Z=SliceCoord(3); %to generalize for non-parallel planes if isfield(CalibIn{icell},'SliceAngle') norm_plane=angle2normal(CalibIn{icell}.SliceAngle); Z=Z-(norm_plane(1)*(X-SliceCoord(1))+norm_plane(2)*(Y-SliceCoord(2)))/norm_plane(3); end end [XIMA,YIMA]=px_XYZ(CalibIn{icell},X,Y,Z);%corresponding image indices for each point in the real space grid end Dx=(coord_x{icell}(end)-coord_x{icell}(1))/(npx(icell)-1); Dy=(coord_y{icell}(end)-coord_y{icell}(1))/(npy(icell)-1); indx_ima=1+round((XIMA-coord_x{icell}(1))/Dx);%indices of the initial matrix close to the points of the new grid %indy_ima=1+round((YIMA-coord_y{icell}(1))/Dy); indy_ima=1+round((coord_y{icell}(end)-YIMA)/Dy); Delta_x=1+(XIMA-coord_x{icell}(1))/Dx-indx_ima;%error in the index discretisation Delta_y=1+(coord_y{icell}(end)-YIMA)/Dy-indy_ima; XIMA=reshape(indx_ima,1,[]);%indices reorganized in 'line' YIMA=reshape(indy_ima,1,[]);%indices reorganized in 'line' flagin=XIMA>=1 & XIMA<=npx(icell) & YIMA >=1 & YIMA<=npy(icell);%flagin=1 inside the original image siz=size(A{icell}); checkuint8=isa(A{icell},'uint8');%check for image input with 8 bits checkuint16=isa(A{icell},'uint16');%check for image input with 16 bits A{icell}=double(A{icell}); if numel(siz)==2 %(B/W images) vec_A=reshape(A{icell}(:,:,1),1,[]);%put the original image in line ind_in=find(flagin); ind_out=find(~flagin); ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA));% indices in vec_A ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A vec_B(ind_in)=vec_A(ICOMB); vec_B(ind_out)=zeros(size(ind_out)); A_out{icell}=reshape(vec_B,np_theta,np_r);%new image in real coordinates DA_y=circshift(A_out{icell},-1,1)-A_out{icell};% derivative DA_y(end,:)=0; DA_x=circshift(A_out{icell},-1,2)-A_out{icell}; DA_x(:,end)=0; A_out{icell}=A_out{icell}+Delta_x.*DA_x+Delta_y.*DA_y;%linear interpolation else for icolor=1:siz(3) vec_A=reshape(A{icell}(:,:,icolor),1,[]);%put the original image in line ind_in=find(flagin); ind_out=find(~flagin); ICOMB=((XIMA-1)*npy(icell)+(npy(icell)+1-YIMA)); ICOMB=ICOMB(flagin);%index corresponding to XIMA and YIMA in the aligned original image vec_A vec_B(ind_in)=vec_A(ICOMB); vec_B(ind_out)=zeros(size(ind_out)); A_out{icell}(:,:,icolor)=reshape(vec_B,np_theta,np_r);%new image in real coordinates DA_y=circshift(A_out{icell}(:,:,icolor),-1,1)-A_out{icell}(:,:,icolor); DA_y(end,:)=0; DA_x=circshift(A_out{icell}(:,:,icolor),-1,2)-A_out{icell}(:,:,icolor); DA_x(:,end)=0; A_out{icell}(:,:,icolor)=A_out{icell}(:,:,icolor)+Delta_x.*DA_x+Delta_y.*DA_y;%linear interpolation end end if checkuint8 A_out{icell}=uint8(A_out{icell}); elseif checkuint16 A_out{icell}=uint16(A_out{icell}); end end