% 'signal_spectrum': calculate and display spectrum of the current field % operate on a 1D signal or the first dimension of a higher dimensional matrix (then average over other dimensions) % this function aplies the Welch method and call the function of the matlab signal processing toolbox % % OUTPUT: % DataOut: if DataIn.Action.RUN=0 (introducing parameters): Matlab structure containing the parameters % else transformed field, here not modified (the function just produces a plot on an independent fig) % % INPUT: % DataIn: Matlab structure containing the input field from the GUI uvmat, DataIn.Action.RUN=0 to set input parameters. % Param: structure containing processing parameters, created when DataIn.Action.RUN=0 at the first use of the transform fct function DataOut=signal_spectrum(DataIn,Param) %% request input parameters if isfield(DataIn,'Action') && isfield(DataIn.Action,'RUN') && isequal(DataIn.Action.RUN,0) VarNbDim=cellfun('length',DataIn.VarDimName); [tild,rank]=sort(VarNbDim,2,'descend');% sort the list of input variables, putting the ones with higher dimensionality first ListVarName=DataIn.ListVarName(rank); VarDimName=DataIn.VarDimName(rank); InitialValue=1;%default choice if isfield(Param,'TransformInput') && isfield(Param.TransformInput,'VariableName') val=find(strcmp(Param.TransformInput.VariableName,ListVarName)); if ~isempty(val); InitialValue=val; end end [s,OK] = listdlg('PromptString','Select the variable to process:',... 'SelectionMode','single','InitialValue',InitialValue,... 'ListString',ListVarName); if OK==1 VarName=ListVarName{s}; DataOut.TransformInput.VariableName=VarName; dlg_title = [mfilename ' calulates spectra along first dim ' VarDimName{s}{1}];% title of the input dialog fig prompt = {'nbre of points for the sliding window'};% titles of the edit boxes %default input: def={'512'};% window length np=size(DataIn.(VarName)); for idim=1:numel(np) % size restriction if idim==1 prompt=[prompt;{['index range for spectral dim ' VarDimName{s}{idim}]}];% titles of the edit boxes else prompt=[prompt;{['index range for ' VarDimName{s}{idim}]}];% titles of the edit boxes end def=[def;{num2str([1 np(idim)])}]; end if isfield(Param,'TransformInput') if isfield(Param.TransformInput,'WindowLength') def{1}=num2str(Param.TransformInput.WindowLength); end if isfield(Param.TransformInput,'IndexRange') for ilist=1:min(numel(np),size(Param.TransformInput.IndexRange,1)) def{ilist+1}=num2str(Param.TransformInput.IndexRange(ilist,:)); end end end num_lines= 1;%numel(prompt); % open the dialog fig answer = inputdlg(prompt,dlg_title,num_lines,def); DataOut.TransformInput.WindowLength=str2num(answer{1}); for ilist=1:numel(answer)-1 DataOut.TransformInput.IndexRange(ilist,1:2)=str2num(answer{ilist+1}); end end return end %% retrieve parameters DataOut=DataIn; WindowLength=Param.TransformInput.WindowLength; Shift=round(WindowLength/2);% shift between two windowsof analysis (half window length by default) %% get the variable to process Var= DataIn.(Param.TransformInput.VariableName);%variable to analyse np=size(Var);%dimensions of Var if ~isvector(Var) Var=reshape(Var,np(1),prod(np(2:end)));% reshape in a 2D matrix with time as first index end Var=Var-ones(np(1),1)*nanmean(Var,1); %substract mean value (excluding NaN) %% look for 'time' coordinate VarIndex=find(strcmp(Param.TransformInput.VariableName,DataIn.ListVarName)); TimeDimName=DataIn.VarDimName{VarIndex}{1}; TimeVarNameIndex=find(strcmp(TimeDimName,DataIn.ListVarName)); if isempty(TimeVarNameIndex) Time=1:np(1); TimeUnit='vector index'; else Time=DataIn.(DataIn.ListVarName{TimeVarNameIndex}); TimeUnit=['Unit of ' TimeDimName]; end % check time intervals diff_x=diff(Time); dx=min(diff_x); freq_max=1/(2*dx); check_interp=0; if diff_x>1.001*dx % non constant time interval check_interp=1; end %% claculate the spectrum specmean=0;% mean spectrum initialisation cospecmean=0; NbNan=0; NbPos=0; for pos=1:size(Var,2) sample=Var(:,pos);%extract sample to analyse ind_bad=find(isnan(sample)); ind_good=find(~isnan(sample)); if numel(ind_good)>WindowLength NbPos=NbPos+1; if ~isempty(ind_bad) sample=sample(ind_good); % keep only non NaN data NbNan=NbNan+numel(ind_bad); end %interpolate if needed if ~isempty(ind_bad)||check_interp sample=interp1(Time(ind_good),sample,(Time(1):dx:Time(end))); %interpolated func end spec=pwelch(sample,WindowLength);% calculate spectrum with Welch method cospec=cpsd(sample,circshift(sample,[1 0]),WindowLength);% calculate the cospectrum with the sample shifted by 1 time unit specmean=spec+specmean; cospecmean=cospec+cospecmean; end end specmean=specmean/NbPos; cospecmean=cospecmean/NbPos; %plot spectrum in log log hfig=findobj('Tag','fig_spectrum'); if isempty(hfig)% create spectruim figure if it does not exist hfig=figure; set(hfig,'Tag','fig_spectrum'); else figure(hfig) end loglog(freq_max*(1:length(specmean))/length(specmean),specmean) hold on loglog(freq_max*(1:length(cospecmean))/length(cospecmean),cospecmean,'r') hold off title (['power spectrum of ' Param.TransformInput.VariableName ]) xlabel(['frequency (cycles per ' TimeUnit ')']) ylabel('spectral intensity') legend({'spectrum','cospectrum t t-1'}) get(gca,'Unit') if NbPos~=size(Var,2) disp([ 'warning: ' num2str(size(Var,2)-NbPos) ' NaN sampled removed']) end if NbNan~=0 disp([ 'warning: ' num2str(NbNan) ' NaN values replaced by linear interpolation']) %text(0.9, 0.5,[ 'warning: ' num2str(NbNan) ' NaN values removed']) end grid on