Changes between Version 12 and Version 13 of ThinPlateShell
 Timestamp:
 Dec 9, 2014, 5:50:11 PM (10 years ago)
Legend:
 Unmodified
 Added
 Removed
 Modified

ThinPlateShell
v12 v13 4 4 To deal with noisy data, smoothing spline do not go strictly through the measurement values, but minimises a linear combination of distance to these values and curvature $E=\sum_{i=1}^{N}(f_{i}f(x_{i}))^{2}+\rho\int_{x_{1}}^{x_{N}}f''(x)''^''{2}\,\mathrm{d}x$, where $\rho$ is a smoothing parameter. In the limit of small $\rho$ , the weight of the distance constraint becomes very strong so the optimum approaches the pure interpolation spline, with $f(x_{i})=f_{i}$ . In the opposite limit of large $\rho$ , the curvature constraint becomes very strong, so the optimum tends to be linear $(f''=0 )$ and approaches the least square linear fit by the minimisation of the distance term contribution. 5 5 6 Generalisation to multidimensional spaces can be performed as products of spline functions along each coordinate. However this choice is not optimum and depends on the coordinate axis. The proper generalisation is the ’thin plate spline’ proposed by Duchon[Duchon]. The name refers to a physical analogy with the bending of a thin sheet of metal. Practical algorithms have been first developed by Pahia Montes .It has been first used in the field of cartography and first applied to flow measurements by [attachment:NguyenDuc !NguyenDuc and Sommeria(1988)]. We use here a more recent algorithm proposed by Wahba, 1990, rely on the standard inversion matrix functions provided by Matlab. 6 Generalisation to multidimensional spaces can be performed as products of spline functions along each coordinate. However this choice is not optimum and depends on the coordinate axis. The proper generalisation is the ’thin plate spline’ proposed by Duchon[Duchon]{{{ 7 [*]_... [*] This is the footnote. 8 }}}. The name refers to a physical analogy with the bending of a thin sheet of metal. Practical algorithms have been first developed by Pahia Montes .It has been first used in the field of cartography and first applied to flow measurements by [attachment:NguyenDuc !NguyenDuc and Sommeria(1988)]. We use here a more recent algorithm proposed by Wahba, 1990, rely on the standard inversion matrix functions provided by Matlab. 7 9 8 10 = Case of pure interpolation =