155 | | Information on image series is provided by a documentation file in the format xml. This file can include sections about image timing, geometric calibration, camera type and illumination. An xml file is a text file in which each element of information, or group of elements, is labelled by a tag. The list of tags and their hierarchical organisation is specified by a schema file (.xsd). The schema used for image documentation is ''ImaDoc.xsd'', available in the uvmat package at the path indicated in {PARAM.xml}). For a general introduction to the xml language, see http://www.w3schools.com/xml. |
| 156 | Information on image series is provided by a documentation file in the format xml. This file can include sections about image timing, geometric calibration, camera type and illumination. An xml file is a text file in which each element of information, or group of elements, is labelled by a tag. The list of tags and their hierarchical organisation is specified by a schema file (.xsd). The schema used for image documentation is ''!ImaDoc.xsd'', available in the uvmat package in a sub-directory ''/Schemas''. A general introduction to the xml language and schemas is provided for instance in http://www.w3schools.com/xml. |
161 | | * <Heading>: contains elements <Campaign>, <Experiment>, <!DataSeries>, which recall the position of the file in the tree structure of data files. This allows the user to check that the document file has not been displaced. |
162 | | * <Camera> contains information on the camera settings, as well as the timing of all the images in a subsection <!BurstTiming>. <!TranslationMotor> and <Oscillator> contains information on the mechanical devices used to produce the laser sheet and scan volumes. |
163 | | * <!GeometryCalib> contains the parameters of the geometric calibration relating the pixel position to the real space coordinates (see [#a8-Geometriccalibration section 8]]). In the case of volume scanning, it also describes the set of laser plane positions and angles. |
164 | | * <Illumination> describes the illumination system used, including the position of the laser source. |
165 | | * <Tracor> describes the properties of the flow tracor (particle, dye...) |
| 162 | * '''<Heading>''' contains elements <Campaign>, <Experiment>, <!DataSeries>, which recall the position of the file in the tree structure of data files. This allows the user to check that the document file has not been displaced. |
| 163 | * '''<Camera>''' contains information on the camera settings, as well as the timing of all the images in a subsection <!BurstTiming>. <!TranslationMotor> and <Oscillator> contains information on the mechanical devices used to produce the laser sheet and scan volumes. |
| 164 | * '''<!GeometryCalib>''' contains the parameters of the geometric calibration relating the pixel position to the real space coordinates (see [#a8-Geometriccalibration section 8]]). In the case of volume scanning, it also describes the set of laser plane positions and angles. |
| 165 | * '''<Illumination>''' describes the illumination system used, including the position of the laser source. |
| 166 | * '''<Tracor>''' describes the properties of the flow tracor (particle, dye...) |
184 | | * ''''.civ' ''' (obsolete) ascii text file containing the list of image times and the scaling in pixels/cm. This is an obsolete version of the xml image documentation file. It is stored in the same directory as the corresponding series of images, with name ''root .civ'' (instead of {root.xml}). It is automatically sought by '''uvmat.fig''' and '''civ.fig''', in the absence of an xml file ImaDoc. (it is read by the function ''read_imatext.m''). |
185 | | * Example : %... gives comments (not included in the file). This example is from an experience with 19 bursts of 4 images, named aa001a,aa001b,aa001c,aa001d,aa002a,aa002b,...,aa019c,aa019d, with an extension .png. The correspopnding .civ file is named aa.civ. |
| 185 | * ''''.civ' ''' (obsolete) ascii text file containing the list of image times and the scaling in pixels/cm. This is an obsolete version of the xml image documentation file. It is stored in the same directory as the corresponding series of images, with name ''root .civ'' (instead of {root.xml}). It is automatically sought by '''uvmat.fig''' and '''civ.fig''', in the absence of an xml file !ImaDoc. (it is read by the function ''read_imatext.m''). The following example is from an experience with 19 bursts of 4 images, named aa001a,aa001b,aa001c,aa001d,aa002a,aa002b,...,aa019c,aa019d, with an extension .png. The corresponding .civ file is named aa.civ. Comments (not included in the file) are indicated with %... |
209 | | * 'Project': contains all information from a project. |
210 | | * 'Campaign' corresponds to a series of experiments obtained by varying a given set of physical parameters. A set of parameter names (with units) is expected to be associated to a campaign. A project may involve several campaigns corresponding to different configurations, hence different relevant parameters. For a single configuration, 'Campaign' can be at the top of the data tree, without an additional 'Project' level. The uvmat package does not manage levels above 'Campaign'. |
211 | | * 'Experiment' is a directory containing all the data for a particular experiment, defined by a choice of values for the physical parameters. |
212 | | * '!DataSeries' contains an image series or movie from a camera, or more generally a data series from a device. Its name must correspond to the device and remain the same for all the experiments using this device. The results from data processing, as provided by 'civ' or 'series', are stored at the same level in a !DataSeries directory, named from the source one with a extension specific to the processing program, for instance .civ for the PIV data. |
| 209 | * '''Project''' contains all information from a project. |
| 210 | * '''Campaign''' corresponds to a series of experiments obtained by varying a given set of physical parameters. A set of parameter names (with units) is expected to be associated to a campaign. A project may involve several campaigns corresponding to different configurations, hence different relevant parameters. For a single configuration, 'Campaign' can be at the top of the data tree, without an additional 'Project' level. The uvmat package does not manage levels above 'Campaign'. |
| 211 | * '''Experiment''' is a directory containing all the data for a particular experiment, defined by a choice of values for the physical parameters. |
| 212 | * '''!DataSeries''' contains an image series or movie from a camera, or more generally a data series from a device. Its name must correspond to the device and remain the same for all the experiments using this device. The results from data processing, as provided by 'civ' or 'series', are stored at the same level in a !DataSeries directory, named from the source one with a extension specific to the processing program, for instance .civ for the PIV data. |
463 | | * ''' !ProjMode 'interp_lin': ''' Linear interpolation of the fields on a grid of regularly spaced points defined on the projection object, with meshes DX, DY, DZ. The grid array along x starts at RangeX(1) and ends at the closest value smaller than RangeX(2). Similar convention is used for y and z in case of planes and volumes. |
464 | | |
465 | | * ''' !ProjMode 'interp_tps': ''' interpolation with thin spline shell. |
| 463 | * ''' !ProjMode 'interp_lin': ''' Linear interpolation of scalar and vector field variables, after exclusion of false data (marqued by error flag). Ancillary data and warning flags are not projected in this mode. Gridded data are interpolated by ..., while fields with scattered coordinates are projected with the Matlab function .... Note that this function provides interpolation only within the convex hull of the initial data set, attributing 'NaN' (undefined) field values out of this domain. To avoid problems with further data processing, uvmat transforms NaN values into zeros, but mark them with an error flag FF=1. |
| 464 | * 'points': linear interpolation on each point of the object. |
| 465 | * 'line','polyline', 'rectangle', 'polygon', 'ellipse': linear interpolation on points regularly spaced on the line, with mesh DX. The X coordinate is the distance following the line, with an origin at the starting point(the first point in 'line','polyline','polygon',the lower left corner for rectangle, the point along the main axis for an ellipse). |
| 466 | * 'plane': linear interpolation on a regular grid with meshes DX, DY and ortigin at (X,Y)=(0,0). This grid is bounded by the two values of RangeX and RangeY along X and Y respectively. |
| 467 | |
| 468 | * ''' !ProjMode 'interp_tps': ''' This behaves with different objects line 'interp_lin', but using the more precise thin spline shell method. This is particularly usefull to calculate spâtial field derivatives. Furthermore this method provides data exrtrapolation outside the initial convex hull (although it is not reliable at large distances). This mode does require a previous calculation of tps weights, see [#a5.1Gridingofdata section 5.1], so it does not act on the initial field cells with scattered coordinates. This is done by uvmat if tps projection is requested. Gridded data are linearly interpolated (to clarify...). |