581 | | -''' Editing the coordinate table: ''' |
582 | | After mouse selection, the physical coordinates must be introduced by editing the table. To make this task easier it is possible to export the table content on the Matlab command window by pressing '''[COPY PTS]''', and copy-paste a column on the table '''[!ListCoord]''' (the column below the introduction cell is filled). A single point can be removed by the 'backward' or 'suppr' keyboard command after selecting its line on the table. The whole set of points can be removed by pressing '''[CLEAR PT]'''. They can be also removed by pressing '''[STORE PT]''', then stored in a xml file (whose path and name is listed in '''[ListCoordFiles]'''). Stored points can be retrieved by the menu bar command '''[Import/calibration points]'''. |
583 | | |
584 | | -'''Introducing a simple scaling:''' |
585 | | |
586 | | -''' Editing the coordinates: ''' |
587 | | |
588 | | For editing the physical coordinates of a calibration point, select it in the list '''[ListCoord]''', and use the edit boxes '''[XObject]''', '''[YObject]''', '''[ZObject] ''' (for 3D calibration). The image coordinates can be also edited by '''[XImage]''', '''[YImage]''', although they are preferably set directly by the mouse. Type 'return carriage' to validate the edition. The reference point can be suppressed by typing the 'backward' arrow on the key-board, or by filling the five boxes with blank values. |
589 | | |
590 | | -''' Creating a physical grid: ''' This tool '''[Tools/Create grid]''' in the menu bar command provides the whole set of physical coordinates of a cartesian grid, after all their image coordinates have been picked out by the mouse. In the GUI '''Create_grid.fig''' which appears, set the first and last x and y values and the meshes for the physical grid corresponding to the points already selected by the mouse. The physical coordinates of all the grid points then appears on '''[ListCoord]'''. |
591 | | |
592 | | -''' Detecting a physical grid: ''' This tool '''[Tools/Detect grid]''' provides the same result as '''[Tools/Create grid]''', but it automatically recognises the grid points on the image, provided the four corners of the grid have been previously selected by the mouse. The calibration points are detected either as image maxima (option 'white markers'), or as black crosses (option 'black markers'). Their position can be adjusted by selection with the mouse. |
593 | | |
594 | | -''' Translation and rotation of calibration points: ''' |
595 | | |
596 | | A translation or rotation (in physical space) can be introduced by the menu bar commands '''[Tools/Translate points]''' and '''[Tools/Rotate points]'''. In the case of rotation, the origin of the rotation, as well as the angle (in degree) must be introduced. The resulting coordinates appear in the list '''[ListCoord]'''. |
597 | | |
598 | | -''' Recording calibration parameters: ''' |
599 | | |
600 | | Once the list of calibration points has been completed, press '''[APPLY]''', after selecting the appropriate option in '''[calib_type]'''. (see the previous sub-section 7.1). Note that the more advanced Tsai options require a sufficient number of calibration points (typically > 10) spread over the image. Calibration coefficients are recorded in the xml file <!ImaDoc> associated with the image currently opened by uvmat. If previous calibration data already exist, the previous xml file is updated, but the original one is preserved with the extension .xml~. If no xml file already exists, it is created. The image transformation to phys coordinates can be directly seen on the '''uvmat.fig''' interface after completion of the command '''[APPLY]'''. |
| 581 | -''' Editing the coordinate table: ''' After mouse selection, the physical coordinates must be introduced by editing the table. To make this task easier it is possible to export the table content on the Matlab command window by pressing '''[COPY PTS]''', and copy-paste a column on the table '''[!ListCoord]''' (the column below the introduction cell is filled). A single point can be removed by the 'backward' or 'suppr' keyboard command after selecting its line on the table. The whole set of points can be removed by pressing '''[CLEAR PT]'''. They can be also removed by pressing '''[STORE PT]''', then stored in a xml file (whose path and name is listed in '''[!ListCoordFiles]'''). Stored points can be retrieved by the menu bar command '''[Import/calibration points]'''. |
| 582 | |
| 583 | -''' Creating a physical grid: ''' This tool '''[!Tools/Create grid]''' in the menu bar command provides the whole set of physical coordinates of a cartesian grid, after all their image coordinates have been picked out by the mouse. In the GUI '''Create_grid.fig''' which appears, set the first and last x and y values and the meshes for the physical grid corresponding to the points already selected by the mouse. The physical coordinates of all the grid points then appears on '''[!ListCoord]'''. |
| 584 | |
| 585 | -''' Detecting a physical grid: ''' This tool '''[!Tools/Detect grid]''' provides the same result as '''[!Tools/Create grid]''', but it automatically recognises the grid points on the image, provided the four corners of the grid have been previously selected by the mouse. The calibration points are detected either as image maxima (option 'white markers'), or as black crosses (option 'black markers'). Their position can be adjusted by selection with the mouse. |
| 586 | |
| 587 | -''' Translation and rotation of calibration points: ''' A translation or rotation (in physical space) can be introduced by the menu bar commands '''[!Tools/Translate points]''' and '''[!Tools/Rotate points]'''. In the case of rotation, the origin of the rotation, as well as the angle (in degree) must be introduced. The resulting coordinates appear in the list '''[!ListCoord]'''. |
| 588 | |
| 589 | -''' Recording calibration parameters: ''' Once the list of calibration points has been completed, press '''[APPLY]''', after selecting the appropriate option in '''[calib_type]'''. (see the previous [#a8.1Generalities sub-section 8.1]). Note that the 3D options require a sufficient number of calibration points (typically > 10) spread over the image with different values of z, or a tilted grid, see below. Calibration coefficients are recorded in the xml file <!ImaDoc> associated with the image currently opened by uvmat. If previous calibration data already exist, the previous xml file is updated, but the original one is preserved with the extension .xml~. If no xml file already exists, it is created. The image transformation to phys coordinates can be directly seen on the '''uvmat.fig''' interface after completion of the command '''[APPLY]'''. |