Changes between Version 115 and Version 116 of WikiStart
- Timestamp:
- Sep 29, 2016, 11:54:46 AM (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
TabularUnified WikiStart
v115 v116 163 163 Water was initially pumped with a flow rate of 15.28 l/s (55 m3/h). This was the highest achievable flow rate. The water was pumped at this rate for 2 minutes and then reduced to 6 l/s. This seems to achieve the desired effect of reaching a steady conductivity value in a short amount of time. The UVP was set over 10 minutes, but still showed noisy data. No siphon sampling was conducted. 164 164 165 ‘’’Wednesday, September 28, 2016''' 166 167 Experiment 1: fixstr1_2809a,b, c, d. Filenames: fixstr1_2709a, fixstr1_2709b, fixstr1_2709c, fixstr1_2709d. Location: Position 1 (75% down straight section, 58 cm upstream from the end of the straight section). Input rate 20 l/s (initial ~ 2 minutes of each run) then reduced to 6 l/s. Density excess 20 kg/m3. Laser was not used in the experiments today. Running basal ADV with ADV !#1 located 7.2 cm, ADV !#2 located at 10 cm and ADV !#3 located at 12 cm above channel bed. 168 169 fixstr1_2809a: The goal is to increase the seeding and test the ADVs and UVP for less noise. A new stem ADV was mounted to reduce the noise. The UVP didn’t change in terms of noise issue, so the problem does not lie with the seeding density. Another suggestion was to move the UVP box back to the back bench to reduce interference from the electronics on the traverse. Minimal improvement was seen on the ADV profile. The seeding seems to be getting stuck in the inlet box behind the flow straightening baffles - this was visually observed by a buildup of foam in the inlet box. 165 170 166 171 … … 169 174 170 175 171