[893] | 1 | %% get the input file |
---|
[971] | 2 | project='/fsnet/project/coriolis/2016/16CREST'; |
---|
| 3 | % if ~exist(project,'dir') |
---|
| 4 | % project='U:\project\coriolis\2015\15MINI_MEDDY\PROBES';%windows |
---|
| 5 | % end |
---|
[959] | 6 | fileinput=uigetfile_uvmat('pick an input file',project); |
---|
[893] | 7 | [Path,Name,Ext]=fileparts(fileinput); |
---|
| 8 | |
---|
| 9 | %% read the input file |
---|
| 10 | FileType=''; |
---|
| 11 | if strcmp(Ext,'.lvm') |
---|
| 12 | disp(['reading ' fileinput '...']) |
---|
[959] | 13 | Data=read_lvm(fileinput) |
---|
[893] | 14 | elseif strcmp(Ext,'.nc') |
---|
| 15 | disp(['reading ' fileinput '...']) |
---|
| 16 | Data=nc2struct(fileinput) |
---|
| 17 | else |
---|
| 18 | disp('invalid input file extension') |
---|
| 19 | end |
---|
| 20 | |
---|
[959] | 21 | %% save netcdf file as .lvm |
---|
[893] | 22 | if strcmp(Ext,'.lvm') |
---|
| 23 | OutputFile=fullfile(Path,[Name '.nc']); |
---|
| 24 | errormsg=struct2nc(OutputFile,Data);% copy the data in a netcdf file |
---|
| 25 | if isempty(errormsg) |
---|
| 26 | disp([OutputFile ' written']) |
---|
| 27 | else |
---|
| 28 | disp(errormsg) |
---|
| 29 | end |
---|
| 30 | [success,msg] = fileattrib(OutputFile,'+w','g')% allow writing access for the group of users |
---|
| 31 | end |
---|
| 32 | |
---|
[959] | 33 | %% use calibration stored in a specified xml file; always use the same file |
---|
| 34 | ProbeDoc=[]; |
---|
| 35 | %XmlFile=fullfile(Path,[Name '.xml']); |
---|
| 36 | XmlFile=fullfile(Path,'calib.xml'); |
---|
[893] | 37 | if exist(XmlFile,'file') |
---|
[959] | 38 | ProbeDoc=xml2struct(XmlFile) |
---|
| 39 | else |
---|
| 40 | disp('no calibration file .xml detected') |
---|
[893] | 41 | end |
---|
[959] | 42 | |
---|
[893] | 43 | % if isfield(Data,'Position'), C2,C4,C6 |
---|
[959] | 44 | % Min=1; Data.Position=Data.Position+PositionMin; |
---|
[893] | 45 | % end |
---|
[959] | 46 | % a5=-2.134088,b5=1010.1611, Data.C2=Data.C2; Data.C5=a5*Data.C5+b5; Data.C6=Data.C2; |
---|
[893] | 47 | % ylabelstring='density drho (kg/m3)'; |
---|
| 48 | |
---|
[959] | 49 | |
---|
| 50 | %% transform temperature probe signals |
---|
| 51 | if isfield(ProbeDoc,'T5')&& ~isempty(ProbeDoc.T5) % if temperature calibration exists; see calibT.m |
---|
| 52 | |
---|
| 53 | Data.T5=exp((Data.T5 - ProbeDoc.T5.a)./ProbeDoc.T5.b);% transform volt signal into temperature |
---|
| 54 | Data.T5=filter(ones(1,60)/60,1,Data.T5); % filter the signal to 4 Hz |
---|
| 55 | figure(6); set(6,'name','temperature'); plot(Data.Time,Data.T5); |
---|
| 56 | %plot(Data.Time,Data.T5,Data.Time,20+Data.Position/100) |
---|
| 57 | title([Data.Experiment ', ' Data.FileName ', Time=' Data.DateTime ', temperature']) |
---|
| 58 | xlabel('Time(s)'); ylabel('temperature (degree C)'); %ylim([20 37]) |
---|
| 59 | grid on |
---|
| 60 | end |
---|
| 61 | |
---|
| 62 | %% check camera signal |
---|
| 63 | ind_start=find(Data.Trig_Cam>3.5,1,'first') |
---|
| 64 | disp(['camera starts at time ' num2str(Data.Time(ind_start))]) |
---|
| 65 | %% transform and filter conductivity probe signals into [temperature-corrected] density |
---|
| 66 | ylabelstring='conductivity signal (volts)'; clist=0;% counter of conductivity probes |
---|
[893] | 67 | for ilist=1:numel(Data.ListVarName) |
---|
| 68 | if isequal(Data.ListVarName{ilist}(1),'C');% if the var name begins by 'C' |
---|
| 69 | clist=clist+1; |
---|
| 70 | CName{clist}=Data.ListVarName{ilist}; |
---|
| 71 | if isfield(ProbeDoc,CName{clist})&& ~isempty(ProbeDoc.(CName{clist})) |
---|
[959] | 72 | |
---|
| 73 | a=ProbeDoc.(CName{clist}).a; b=ProbeDoc.(CName{clist}).b; |
---|
| 74 | % Data.(CName{clist})=a*Data.(CName{clist})+b;% volts STRAIGHT into density (if const T) |
---|
| 75 | |
---|
| 76 | %% BUT now need to modify conductivity, density due to temperature effect |
---|
| 77 | %% first put into conductivity - using just C5 conductivity calibration for now (22/7/15) |
---|
| 78 | ac1 = 0.5766e4; bc1 = 2.9129e4; %% this was found later, w/ different gain. Use the one below instead |
---|
| 79 | %% ac1 = 0.4845e4; bc1 = 2.064e4; %% this was w/ the gain when we did the experiments; but it doesn't work? |
---|
| 80 | Data.(CName{clist})=ac1*Data.(CName{clist})+bc1; %% voltage translated into conductivity via calibration |
---|
| 81 | |
---|
| 82 | %% read in temperature... |
---|
| 83 | refT = 23; T = Data.T5; |
---|
| 84 | Hewitt_fit = [2.2794885e-11 -6.2634979e-9 1.5439826e-7 7.8601061e-5 2.1179818e-2]; |
---|
| 85 | bfit = reshape(polyval(Hewitt_fit,T(:)),size(T)); bref = reshape(polyval(Hewitt_fit,refT(:)),size(refT)); |
---|
| 86 | sigTsig18 = (1+bfit.*(T-18)); sigREFsig18 = (1+bref.*(refT-18)); |
---|
| 87 | modfactor = sigTsig18./sigREFsig18; |
---|
| 88 | modfactor = 1./modfactor; %% now in sigREF/sigT, which (* sigT) below to get sigREF, which can convert to rho |
---|
| 89 | Data.(CName{clist})=Data.(CName{clist}).*modfactor %% = temp corrected conductivity (= as if at reference temp) |
---|
| 90 | |
---|
| 91 | %% now we need to put the modified conductivity back into a (modified) voltage, then estimate density directly. |
---|
| 92 | ac2 = 1.7343e-4; bc2 = -5.0048; |
---|
| 93 | Data.(CName{clist})=ac2*Data.(CName{clist})+bc2; % temp-corrected voltage |
---|
| 94 | Data.(CName{clist})=a*Data.(CName{clist})+b; % now finally voltage into density |
---|
[893] | 95 | Data.(CName{clist})=filter(ones(1,20)/20,1,Data.(CName{clist})); % filter the signal to 10 Hz |
---|
| 96 | ylabelstring='density drho (g/cm3)'; |
---|
[959] | 97 | |
---|
[893] | 98 | end |
---|
| 99 | end |
---|
| 100 | end |
---|
| 101 | |
---|
[959] | 102 | %% plot conductivity signals |
---|
| 103 | figure(1); set(1,'name','conductivity') |
---|
| 104 | bandwidth2=60; % corresponds to 0.25 cm (1 cm/s with 240 pts/s), removes 4 Hertz |
---|
[893] | 105 | plot_string='plot('; |
---|
| 106 | for clist=1:numel(CName) |
---|
[959] | 107 | Data.(CName{clist})=filter(ones(1,bandwidth2)/bandwidth2,1,Data.(CName{clist}));%low pass filter |
---|
[893] | 108 | plot_string=[plot_string 'Data.Time,Data.' CName{clist} ',']; |
---|
| 109 | end |
---|
| 110 | plot_string(end)=')'; |
---|
| 111 | eval(plot_string) |
---|
| 112 | legend(CName') |
---|
| 113 | htitle=title([Data.Experiment ', ' Data.FileName ', Time=' Data.DateTime ', conductivity probes']); |
---|
| 114 | set(htitle,'Interpreter','none')% desable tex interpreter |
---|
| 115 | xlabel('Time(s)') |
---|
| 116 | ylabel(ylabelstring) |
---|
[959] | 117 | ylim([1 1.02]) |
---|
[893] | 118 | grid on |
---|
| 119 | |
---|
| 120 | if isfield(Data,'Position') |
---|
[959] | 121 | %% plot motor position |
---|
[893] | 122 | figure(2) |
---|
| 123 | set(2,'name','position') |
---|
| 124 | plot(Data.Time,Data.Position) |
---|
| 125 | htitle=title([Data.Experiment ', ' Data.FileName ', Time=' Data.DateTime ', probe position ']); |
---|
| 126 | set(htitle,'Interpreter','none')% desable tex interpreter |
---|
| 127 | xlabel('Time(s)') |
---|
| 128 | ylabel('Z (cm)') |
---|
| 129 | grid on |
---|
| 130 | hold on |
---|
| 131 | plot(Data.Time,Data.Speed) |
---|
[959] | 132 | |
---|
[893] | 133 | %% plot conductivity probe profiles (limited to downward motion, Data.Speed<0) |
---|
| 134 | if ~isempty(ProbeDoc) |
---|
| 135 | figure(3) |
---|
| 136 | set(3,'name','profiles') |
---|
| 137 | Zmotor=Data.Position(Data.Speed<0); |
---|
| 138 | Z=Zmotor*ones(1,numel(CName));%motor position transformed in a matrix with a columnfor each probe |
---|
| 139 | Zmax=max(Zmotor); |
---|
| 140 | plot_string='plot('; |
---|
| 141 | for clist=1:numel(CName) |
---|
| 142 | if isfield(ProbeDoc,CName{clist})&& ~isempty(ProbeDoc.(CName{clist})) && size(ProbeDoc.(CName{clist}).Position,2)>=2 % if at least two positions are defined to indicate that the probe moves |
---|
| 143 | Zprobe=Zmotor-Zmax+ProbeDoc.(CName{clist}).Position(2,3);%upper position of the probe |
---|
| 144 | Zprobe(Zprobe<ProbeDoc.(CName{clist}).Position(1,3))=ProbeDoc.(CName{clist}).Position(1,3); |
---|
| 145 | Z(:,clist)=Zprobe;% add to z the first z position of the chosen probe (given in the xml file) |
---|
| 146 | plot_string=[plot_string 'Z(:,' num2str(clist) '),Data.' CName{clist} '(Data.Speed<0),']; |
---|
| 147 | end |
---|
| 148 | end |
---|
| 149 | plot_string(end)=')'; |
---|
| 150 | eval(plot_string) |
---|
| 151 | legend(CName') |
---|
| 152 | htitle=title([Data.Experiment ', ' Data.FileName ', Time=' Data.DateTime ', conductivity probes']); |
---|
| 153 | set(htitle,'Interpreter','none')% desable tex interpreter |
---|
| 154 | xlabel('Z(cm)') |
---|
| 155 | ylabel(ylabelstring) |
---|
[959] | 156 | ylim([1 1.02]) |
---|
[893] | 157 | grid on |
---|
| 158 | end |
---|
[959] | 159 | |
---|
[893] | 160 | end |
---|
| 161 | |
---|
[959] | 162 | %%%% |
---|
| 163 | figure(4) |
---|
| 164 | bandwidth1=480; % corresponds to 2 cm (1 cm/s with 240 pts/s) |
---|
| 165 | bandwidth2=60; % corresponds to 0.25 cm (1 cm/s with 240 pts/s), removes 4 Hertz |
---|
| 166 | C5_filter_low=filter(ones(1,bandwidth2)/bandwidth2,1,Data.C5);%low pass filter |
---|
| 167 | C5_filter=filter(ones(1,bandwidth1)/bandwidth1,1,C5_filter_low);%low pass filter |
---|
| 168 | C5_filter=C5_filter_low-C5_filter;% high pass filter |
---|
| 169 | C5_filter(Data.Speed>-0.1)=NaN; |
---|
| 170 | plot(Data.Time,C5_filter) |
---|
| 171 | ylim([-0.001 0.001]) |
---|
| 172 | hold on |
---|
| 173 | plot(Data.Time,Data.Position/100000) |
---|
| 174 | grid on |
---|
| 175 | hold off |
---|
| 176 | title('C5 filtered') |
---|
[893] | 177 | |
---|
[959] | 178 | %%%% |
---|
| 179 | figure(5) |
---|
| 180 | bandwidth1=480; % corresponds to 2 cm (1 cm/s with 240 pts/s) |
---|
| 181 | bandwidth2=60; % corresponds to 0.25 cm (1 cm/s with 240 pts/s), removes 4 Hertz |
---|
| 182 | C3_filter_low=filter(ones(1,bandwidth2)/bandwidth2,1,Data.C3);%low pass filter |
---|
| 183 | C3_filter=filter(ones(1,bandwidth1)/bandwidth1,1,C3_filter_low);%low pass filter |
---|
| 184 | C3_filter=C3_filter_low-C3_filter;% high pass filter |
---|
| 185 | C3_filter(Data.Speed>-0.1)=NaN; |
---|
| 186 | plot(Data.Time,C3_filter) |
---|
| 187 | ylim([-0.001 0.001]) |
---|
| 188 | hold on |
---|
| 189 | plot(Data.Time,Data.Position/100000) |
---|
| 190 | grid on |
---|
| 191 | hold off |
---|
| 192 | title('C3 filtered') |
---|
[893] | 193 | |
---|
| 194 | %% plot velocity (ADV) signals |
---|
| 195 | % figure(5) |
---|
| 196 | % set(5,'name','velocity') |
---|
| 197 | % plot(Data.Time,Data.ADV_X,Data.Time,Data.ADV_Y,Data.Time,Data.ADV_Z1,Data.Time,Data.ADV_Z2) |
---|
| 198 | % legend({'ADV_X';'ADV_Y';'ADV_Z1';'ADV_Z2'}) |
---|
| 199 | % title([Data.Experiment ', ' Data.FileName ', Time=' Data.DateTime ', signal velocity']) |
---|
| 200 | % xlabel('Time(s)') |
---|
| 201 | % ylabel('signal (Volt)') |
---|
| 202 | % grid on |
---|
| 203 | |
---|
| 204 | %% plot velocity interface signals |
---|
| 205 | % figure(6) |
---|
| 206 | % set(6,'name','interface') |
---|
| 207 | % plot(Data.Time,Data.I1,Data.Time,Data.I2,Data.Time,Data.I3,Data.Time,Data.I4) |
---|
| 208 | % legend({'I1';'I2';'I3';'I4'}) |
---|
| 209 | % title([Data.Experiment ', ' Data.FileName ', Time=' Data.DateTime ', signal interface (ultrasound)']) |
---|
| 210 | % xlabel('Time(s)') |
---|
| 211 | % ylabel('signal (Volt)') |
---|
| 212 | % grid on |
---|
| 213 | |
---|
| 214 | |
---|
[959] | 215 | |
---|