[616] | 1 | % function ParamOut=particle_tracking(Param) |
---|
| 2 | % |
---|
| 3 | % Method: |
---|
| 4 | |
---|
| 5 | % Organization of image indices: |
---|
| 6 | |
---|
| 7 | %INPUT: |
---|
| 8 | % num_i1: matrix of image indices i |
---|
| 9 | % num_j1: matrix of image indices j, must be the same size as num_i1 |
---|
| 10 | % num_i2 and num_j2: not used for a function acting on images |
---|
| 11 | % Series: matlab structure containing parameters, as defined by the interface UVMAT/series |
---|
| 12 | % Series.RootPath{1}: path to the image series |
---|
| 13 | % Series.RootFile{1}: root file name |
---|
| 14 | % Series.FileExt{1}: image file extension |
---|
| 15 | % Series.NomType{1}: nomenclature type for file in |
---|
| 16 | % |
---|
| 17 | % Method: |
---|
| 18 | % Series.NbSlice: %number of slices defined on the interface |
---|
| 19 | % global A rangx0 rangy0 minA maxA; % make current image A accessible in workspace |
---|
| 20 | % global hfig1 hfig2 scalar |
---|
| 21 | % global Abackg nbpart lum diam |
---|
| 22 | %%%%%%%%%%%%%%ù |
---|
| 23 | % |
---|
| 24 | %%%%%%%%%%% GENERAL TO ALL SERIES ACTION FCTS %%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 25 | % |
---|
| 26 | %OUTPUT |
---|
| 27 | % ParamOut: sets options in the GUI series.fig needed for the function |
---|
| 28 | % |
---|
| 29 | %INPUT: |
---|
| 30 | % In run mode, the input parameters are given as a Matlab structure Param copied from the GUI series. |
---|
| 31 | % In batch mode, Param is the name of the corresponding xml file containing the same information |
---|
| 32 | % when Param.Action.RUN=0 (as activated when the current Action is selected |
---|
| 33 | % in series), the function ouput paramOut set the activation of the needed GUI elements |
---|
| 34 | % |
---|
| 35 | % Param contains the elements:(use the menu bar command 'export/GUI config' in series to |
---|
| 36 | % see the current structure Param) |
---|
| 37 | % .InputTable: cell of input file names, (several lines for multiple input) |
---|
| 38 | % each line decomposed as {RootPath,SubDir,Rootfile,NomType,Extension} |
---|
| 39 | % .OutputSubDir: name of the subdirectory for data outputs |
---|
| 40 | % .OutputDirExt: directory extension for data outputs |
---|
| 41 | % .Action: .ActionName: name of the current activated function |
---|
| 42 | % .ActionPath: path of the current activated function |
---|
| 43 | % .ActionExt: fct extension ('.m', Matlab fct, '.sh', compiled Matlab fct |
---|
| 44 | % .RUN =0 for GUI input, =1 for function activation |
---|
| 45 | % .RunMode='local','background', 'cluster': type of function use |
---|
| 46 | % |
---|
| 47 | % .IndexRange: set the file or frame indices on which the action must be performed |
---|
| 48 | % .FieldTransform: .TransformName: name of the selected transform function |
---|
| 49 | % .TransformPath: path of the selected transform function |
---|
| 50 | % .InputFields: sub structure describing the input fields withfields |
---|
| 51 | % .FieldName: name(s) of the field |
---|
| 52 | % .VelType: velocity type |
---|
| 53 | % .FieldName_1: name of the second field in case of two input series |
---|
| 54 | % .VelType_1: velocity type of the second field in case of two input series |
---|
| 55 | % .Coord_y: name of y coordinate variable |
---|
| 56 | % .Coord_x: name of x coordinate variable |
---|
| 57 | % .ProjObject: %sub structure describing a projection object (read from ancillary GUI set_object) |
---|
| 58 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 59 | |
---|
| 60 | function ParamOut=particle_tracking(Param) |
---|
| 61 | |
---|
| 62 | %% set the input elements needed on the GUI series when the action is selected in the menu ActionName |
---|
| 63 | if isstruct(Param) && isequal(Param.Action.RUN,0) |
---|
| 64 | % general settings of the GUI: |
---|
| 65 | ParamOut.AllowInputSort='off';% allow alphabetic sorting of the list of input file SubDir (options 'off'/'on', 'off' by default) |
---|
| 66 | ParamOut.WholeIndexRange='off';% prescribes the file index ranges from min to max (options 'off'/'on', 'off' by default) |
---|
| 67 | ParamOut.NbSlice='off'; %nbre of slices ('off' by default) |
---|
| 68 | ParamOut.VelType='off';% menu for selecting the velocity type (options 'off'/'one'/'two', 'off' by default) |
---|
| 69 | ParamOut.FieldName='off';% menu for selecting the field (s) in the input file(options 'off'/'one'/'two', 'off' by default) |
---|
| 70 | ParamOut.FieldTransform = 'off';%can use a transform function |
---|
| 71 | ParamOut.ProjObject='off';%can use projection object(option 'off'/'on', |
---|
| 72 | ParamOut.Mask='off';%can use mask option (option 'off'/'on', 'off' by default) |
---|
| 73 | ParamOut.OutputDirExt='.track';%set the output dir extension |
---|
| 74 | ParamOut.OutputFileMode='NbSlice';% '=NbInput': 1 output file per input file index, '=NbInput_i': 1 file per input file index i, '=NbSlice': 1 file per slice |
---|
| 75 | filecell=get_file_series(Param);%check existence of the first input file |
---|
| 76 | if ~exist(filecell{1,1},'file') |
---|
| 77 | msgbox_uvmat('WARNING','the first input file does not exist') |
---|
| 78 | end |
---|
| 79 | % parameters specific to the function 'particle_tracking' |
---|
[619] | 80 | % Par.Nblock=[];%size of image subblocks for background determination, =[]: no sublock |
---|
| 81 | % Par.ThreshLum=-2000;% luminosity threshold for particle detection, < 0 for black particles, >0 for white particles |
---|
| 82 | % ParamOut.ActionInput=Par; |
---|
[618] | 83 | return |
---|
[616] | 84 | end |
---|
| 85 | |
---|
| 86 | %%%%%%%%%%%% STANDARD RUN PART %%%%%%%%%%%% |
---|
| 87 | ParamOut=[]; |
---|
| 88 | %% read input parameters from an xml file if input is a file name (batch mode) |
---|
| 89 | checkrun=1; |
---|
| 90 | if ischar(Param) |
---|
| 91 | Param=xml2struct(Param);% read Param as input file (batch case) |
---|
| 92 | checkrun=0; |
---|
| 93 | end |
---|
| 94 | |
---|
| 95 | %% define the directory for result file |
---|
| 96 | OutputDir=[Param.OutputSubDir Param.OutputDirExt]; |
---|
| 97 | |
---|
| 98 | %% root input file(s) name, type and index series |
---|
| 99 | RootPath=Param.InputTable{1,1}; |
---|
| 100 | RootFile=Param.InputTable{1,3}; |
---|
| 101 | SubDir=Param.InputTable{1,2}; |
---|
| 102 | NomType=Param.InputTable{1,4}; |
---|
| 103 | FileExt=Param.InputTable{1,5}; |
---|
| 104 | [filecell,i1_series,i2_series,j1_series,j2_series]=get_file_series(Param); |
---|
| 105 | %%%%%%%%%%%% |
---|
| 106 | % The cell array filecell is the list of input file names, while |
---|
| 107 | % filecell{iview,fileindex}: |
---|
| 108 | % iview: line in the table corresponding to a given file series |
---|
| 109 | % fileindex: file index within the file series, |
---|
| 110 | % i1_series(iview,ref_j,ref_i)... are the corresponding arrays of indices i1,i2,j1,j2, depending on the input line iview and the two reference indices ref_i,ref_j |
---|
| 111 | % i1_series(iview,fileindex) expresses the same indices as a 1D array in file indices |
---|
| 112 | %%%%%%%%%%%% |
---|
| 113 | nbview=numel(i1_series);%number of input file series (lines in InputTable) |
---|
| 114 | nbfield_j=size(i1_series{1},1); %nb of fields for the j index (bursts or volume slices) |
---|
| 115 | nbfield_i=size(i1_series{1},2); %nb of fields for the i index |
---|
| 116 | nbfield=nbfield_j*nbfield_i; %total number of fields |
---|
| 117 | |
---|
[618] | 118 | %% frame index for movie or multimage file input |
---|
| 119 | if ~isempty(j1_series{1}) |
---|
| 120 | frame_index=j1_series{1}; |
---|
| 121 | else |
---|
| 122 | frame_index=i1_series{1}; |
---|
| 123 | end |
---|
| 124 | |
---|
[616] | 125 | %% check the input file type |
---|
[784] | 126 | [FileInfo,VideoObject]=get_file_info(filecell{1,1}); |
---|
[783] | 127 | FileType=FileInfo.FileType; |
---|
[616] | 128 | ImageTypeOptions={'image','multimage','mmreader','video'}; |
---|
| 129 | if isempty(find(strcmp(FileType,ImageTypeOptions))) |
---|
| 130 | disp('input file not images') |
---|
| 131 | return |
---|
| 132 | end |
---|
| 133 | |
---|
| 134 | %% calibration data and timing: read the ImaDoc files |
---|
| 135 | [XmlData,NbSlice_calib,time,errormsg]=read_multimadoc(RootPath,SubDir,RootFile,FileExt,i1_series,i2_series,j1_series,j2_series); |
---|
| 136 | |
---|
| 137 | %%%%%%%%%%%% SPECIFIC PART (to edit) %%%%%%%%%%%% |
---|
| 138 | %filter for particle center of mass(luminosity) |
---|
[619] | 139 | %Nblock=Param.ActionInput.Nblock; |
---|
| 140 | %ThreshLum=Param.ActionInput.ThreshLum;% luminosity threshold for particle detection, < 0 for black particles, >0 for white particles |
---|
| 141 | AbsThreshold=30; %threshold below which a pixel is considered belonging to a float |
---|
| 142 | % |
---|
[616] | 143 | hh=ones(5,5); |
---|
| 144 | hh(1,1)=0; |
---|
| 145 | hh(1,5)=0;% sum luminosity on the 5x5 domain without corners |
---|
| 146 | hh(5,1)=0; |
---|
| 147 | hh(5,5)=0; |
---|
| 148 | hdx=[-2:1:2]; |
---|
| 149 | hdy=[-2:1:2]; |
---|
| 150 | [hdX,hdY]=meshgrid(hdx,hdy); |
---|
| 151 | hdX(1,1)=0; |
---|
| 152 | hdX(1,5)=0;% sum luminosity on the 5x5 domain -corners |
---|
| 153 | hdX(5,1)=0; |
---|
| 154 | hdX(5,5)=0; |
---|
| 155 | hdY(1,1)=0; |
---|
| 156 | hdY(1,5)=0;% sum luminosity on the 5x5 domain -corners |
---|
| 157 | hdY(5,1)=0; |
---|
| 158 | hdY(5,5)=0; |
---|
| 159 | |
---|
| 160 | %% mask to reduce the working area (optional) |
---|
| 161 | CheckMask=0; |
---|
| 162 | if isfield(Param,'CheckMask') && isequal(Param.CheckMask,1) |
---|
| 163 | [maskname,TestMask]=name_generator([filebase '_1mask'],1,1,'.png','_i'); |
---|
| 164 | MaskIma=imread(maskname); |
---|
| 165 | Mask=MaskIma>=200;%=1 for good points, 0 for bad |
---|
| 166 | CheckMask=1; |
---|
| 167 | end |
---|
| 168 | |
---|
[619] | 169 | %%%%%% MAIN LOOP ON FRAMES %%%%%% |
---|
[616] | 170 | for ifile=1:nbfield |
---|
| 171 | if checkrun |
---|
| 172 | if strcmp(get(Param.RUNHandle,'BusyAction'),'queue') |
---|
| 173 | update_waitbar(Param.WaitbarHandle,ifile/nbfield) |
---|
| 174 | else |
---|
| 175 | break% leave the loop if the STOP button is activated on the GUI series |
---|
| 176 | end |
---|
| 177 | end |
---|
[618] | 178 | if ~isempty(j1_series)&&~isequal(j1_series,{[]}) |
---|
| 179 | j1=j1_series{1}(ifile); |
---|
| 180 | end |
---|
| 181 | filename=fullfile_uvmat(RootPath,SubDir,RootFile,FileExt,NomType,i1_series{1}(ifile),[],j1); |
---|
[619] | 182 | A=read_image(filename,FileType,VideoObject,frame_index(ifile));% read the current frame |
---|
[616] | 183 | if ndims(A)==3;%color images |
---|
[618] | 184 | A=sum(double(A),3);% take the sum of color components |
---|
[616] | 185 | end |
---|
| 186 | if ThreshLum<0 |
---|
| 187 | A=max(max(A))-A;%take the negative |
---|
| 188 | end |
---|
[618] | 189 | if CheckMask |
---|
[616] | 190 | A=A.*Mask; |
---|
| 191 | end |
---|
| 192 | if isempty(Nblock) |
---|
| 193 | A=A-min(min(A));%substract absolute mean |
---|
| 194 | else |
---|
| 195 | Aflagmin=sparse(imregionalmin(A));%Amin=1 for local image minima |
---|
| 196 | Amin=A.*Aflagmin;%values of A at local minima |
---|
| 197 | % local background: find all the local minima in image subblocks |
---|
| 198 | sumblock= inline('sum(sum(x(:)))'); |
---|
| 199 | Backgi=blkproc(Amin,[Nblock Nblock],sumblock);% take the sum in blocks |
---|
| 200 | Bmin=blkproc(Aflagmin,[Nblock Nblock],sumblock);% find the number of minima in blocks |
---|
| 201 | Backgi=Backgi./Bmin; % find the average of minima in blocks |
---|
| 202 | % Backg=Backg+Backgi; |
---|
| 203 | Backg=Backgi; |
---|
| 204 | A=A-imresize(Backg/nburst(1),size(A),'bilinear');% interpolate to the initial size image and substract |
---|
| 205 | end |
---|
[618] | 206 | Aflagmax=sparse(imregionalmax(A));%find local maxima |
---|
| 207 | Plum=imfilter(A,hh);% sum A on 5x% domains |
---|
[616] | 208 | Plum=Aflagmax.*Plum;% Plum gives the particle luminosity at each particle location, 0 elsewhere |
---|
| 209 | %make statistics on particles,restricted to a subdomain Sub |
---|
| 210 | [Js,Is,lum]=find(Plum);%particle luminosity |
---|
| 211 | Plum=(Plum>ThreshLum).*Plum;% introduce a threshold for particle luminosity |
---|
| 212 | Aflagmax=Aflagmax.*(Plum>ThreshLum); |
---|
| 213 | [Js,Is,lum]=find(Plum);%particle luminosity |
---|
| 214 | nbtotal=size(Is) |
---|
| 215 | nbtotal=nbtotal(1); |
---|
| 216 | %particle size |
---|
[618] | 217 | Parea=Aflagmax.*(Plum./A); %particle luminosity/max luminosity=area |
---|
[616] | 218 | Pdiam=sqrt(Parea); |
---|
| 219 | [Js,Is,diam]=find(Pdiam);%particle location |
---|
| 220 | |
---|
| 221 | %%%%%%%%%%%%%%%%%%%%% |
---|
| 222 | |
---|
| 223 | %nbre of particles per block |
---|
| 224 | % nbpart=blkproc(Aflagmax,[Nblock Nblock],sumblock);% |
---|
| 225 | % npb=size(nbpart); |
---|
| 226 | % rangxb=[0.5 (npb(2)-0.5)]*Nblock; % pixel x coordinates for image display |
---|
| 227 | % rangyb=[(npb(1)-0.5) 0.5]*Nblock; % pixel y coordinates for image display |
---|
| 228 | % image(rangxb,rangyb,nbpart); |
---|
| 229 | |
---|
| 230 | % get the particle centre of mass |
---|
[618] | 231 | dx=imfilter(A,hdX); |
---|
| 232 | dy=imfilter(A,-hdY); |
---|
[616] | 233 | dx=Aflagmax.*(dx./Plum); |
---|
| 234 | dy=Aflagmax.*(dy./Plum); |
---|
| 235 | dx=dx/pxcm; |
---|
| 236 | dy=dy/pycm; |
---|
| 237 | I=([1:npxy(2)]-0.5)/pxcm; %x pos |
---|
| 238 | J=([npxy(1):-1:1]-0.5)/pycm; %y pos |
---|
| 239 | [Ipos,Jpos]=meshgrid(I,J); |
---|
| 240 | Ipos=reshape(Ipos,1,npxy(2)*npxy(1)); |
---|
| 241 | Jpos=reshape(Jpos,1,npxy(2)*npxy(1)); |
---|
| 242 | dx=reshape(dx,1,npxy(2)*npxy(1)); |
---|
| 243 | dy=reshape(dy,1,npxy(2)*npxy(1)); |
---|
| 244 | Aflag=reshape(Aflagmax,1,npxy(2)*npxy(1)); |
---|
| 245 | ind=find(Aflag);% select particle positions |
---|
| 246 | XPart{ifile}=Ipos(ind)+dx(ind); |
---|
| 247 | YPart{ifile}=Jpos(ind)+dy(ind); |
---|
| 248 | end |
---|
| 249 | hold off |
---|
| 250 | |
---|
| 251 | size(XPart{1}) |
---|
| 252 | |
---|
| 253 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 254 | %Trajectoires |
---|
| 255 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 256 | for ifile=1:nbfield |
---|
| 257 | |
---|
| 258 | [XPart{ifile},YPart{ifile}]=phys_XYZ(Calib,XPart{ifile},YPart{ifile}); |
---|
| 259 | |
---|
| 260 | end |
---|
| 261 | |
---|
| 262 | if nbfield>2 |
---|
| 263 | figpart=figure |
---|
| 264 | hold on |
---|
| 265 | plot(XPart{1}(:),YPart{1}(:),'r+') |
---|
| 266 | plot(XPart{2}(:),YPart{2}(:),'b+') |
---|
| 267 | plot(XPart{3}(:),YPart{3}(:),'y+') |
---|
| 268 | legend('particules image 1','particules image 2','particules image 3'); |
---|
| 269 | xlabel('x (cm)'); |
---|
| 270 | ylabel('y (cm)'); |
---|
| 271 | title('Position des particules') |
---|
| 272 | else |
---|
| 273 | figpart=figure |
---|
| 274 | hold on |
---|
| 275 | plot(XPart{1}(:),YPart{1}(:),'r+') |
---|
| 276 | plot(XPart{2}(:),YPart{2}(:),'b+') |
---|
| 277 | legend('particules image 1','particules image 2'); |
---|
| 278 | xlabel('x (cm)'); |
---|
| 279 | ylabel('y (cm)'); |
---|
| 280 | title('Position des particules') |
---|
| 281 | end |
---|
| 282 | |
---|
| 283 | % prompt={'Ymin (cm)','Ymax( cm)','Xmin (cm)','Xmax (cm)'}; |
---|
| 284 | % Rep=inputdlg(prompt,'Experiment'); |
---|
| 285 | % Ymin=str2double(Rep(1)); |
---|
| 286 | % Ymax=str2double(Rep(2)); |
---|
| 287 | % Xmin=str2double(Rep(3)); |
---|
| 288 | % Xmax=str2double(Rep(4)); |
---|
| 289 | |
---|
| 290 | Ymin=6; |
---|
| 291 | Ymax=14; |
---|
| 292 | Xmin=15; |
---|
| 293 | Xmax=35; |
---|
| 294 | |
---|
| 295 | plot(Xmin,Ymin,'g+') |
---|
| 296 | plot(Xmin,Ymax,'g+') |
---|
| 297 | plot(Xmax,Ymin,'g+') |
---|
| 298 | plot(Xmax,Ymax,'g+') |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | for ima=2:nbfield |
---|
| 302 | t{1}=0*ones(size(XPart{1},2),1); |
---|
| 303 | burst(1)=0; |
---|
| 304 | burst(2)=0.018; |
---|
| 305 | burst(3)=0.036; |
---|
| 306 | % nburst=strcat('burst',num2str(ima-1),'-',num2str(ima),' (s)'); |
---|
| 307 | % prompt={'burst (s)'}; |
---|
| 308 | % Rep=inputdlg(prompt,nburst); |
---|
| 309 | % burst(ima)=str2double(Rep(1)); |
---|
| 310 | t{ima}=(burst(ima)+burst(ima-1))*ones(size(XPart{ima},2),1); |
---|
| 311 | end |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | for ima=1:nbfield |
---|
| 316 | |
---|
| 317 | IndY{ima}=find(YPart{ima}>Ymin & YPart{ima}<Ymax & XPart{ima}>Xmin & XPart{ima}<Xmax); |
---|
| 318 | XPart{ima}=XPart{ima}(IndY{ima}); |
---|
| 319 | YPart{ima}=YPart{ima}(IndY{ima}); |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | end |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | |
---|
| 326 | %%%%%%%%%%%%%%%%%%%%%%% |
---|
| 327 | % Calcul de v1 |
---|
| 328 | %%%%%%%%%%%%%%%%%%%%%%% |
---|
| 329 | |
---|
| 330 | for i=1:size(XPart{1},2) |
---|
| 331 | MatPos{1}(i,1)=XPart{1}(i); |
---|
| 332 | MatPos{1}(i,2)=YPart{1}(i); |
---|
| 333 | MatPos{1}(i,3)=t{1}(i); |
---|
| 334 | %MatPos{1}(i,4)=i; |
---|
| 335 | end |
---|
| 336 | |
---|
| 337 | for j=1:size(XPart{2},2)-1 |
---|
| 338 | MatPos{1}(j+size(XPart{1},2),1)=XPart{2}(j); |
---|
| 339 | MatPos{1}(j+size(XPart{1},2),2)=YPart{2}(j); |
---|
| 340 | MatPos{1}(j+size(XPart{1},2),3)=t{2}(j); |
---|
| 341 | %MatPos{1}(j,4)=j+size(XPart{1},2); |
---|
| 342 | end |
---|
| 343 | |
---|
| 344 | % Dmax=inputdlg('Entrer la distance maximum (0.25 cm)','dmax (cm)',1) |
---|
| 345 | % dmax=str2num(Dmax{1}); |
---|
| 346 | dmax=0.23; |
---|
| 347 | |
---|
| 348 | result{1}=track(MatPos{1},dmax); |
---|
| 349 | |
---|
| 350 | izero=1; |
---|
| 351 | for itest=1:1:size(result{1},1)-1 |
---|
| 352 | if result{1}(itest+1,4)==result{1}(itest,4) |
---|
| 353 | vitu{1}(izero,1)=(result{1}(itest+1,1)-result{1}(itest,1))/burst(2); |
---|
| 354 | vitu{1}(izero,2)=result{1}(itest,4); |
---|
| 355 | vitv{1}(izero,1)=(result{1}(itest+1,2)-result{1}(itest,2))/burst(2); |
---|
| 356 | vitv{1}(izero,2)=result{1}(itest,4); |
---|
| 357 | MatPos{2}(izero,1)=result{1}(itest,1); |
---|
| 358 | MatPos{2}(izero,2)=result{1}(itest,2); |
---|
| 359 | izero=izero+1; |
---|
| 360 | end |
---|
| 361 | end |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | vitfu{1}=vitu{1}; |
---|
| 365 | vitfv{1}=vitv{1}; |
---|
| 366 | |
---|
| 367 | |
---|
| 368 | %%%%%%%%%%%%%%%%%%%%%%% |
---|
| 369 | % Calcul de vi |
---|
| 370 | %%%%%%%%%%%%%%%%%%%%%%% |
---|
| 371 | |
---|
| 372 | |
---|
| 373 | if nbfield>2 |
---|
| 374 | for ima=2:nbfield-1 |
---|
| 375 | |
---|
| 376 | for i=1:size(MatPos{ima},1) |
---|
| 377 | MatPos{ima+1}(i,1)=MatPos{ima}(i,1)+(burst(ima+1)*vitfu{ima-1}(i)); |
---|
| 378 | MatPos{ima+1}(i,2)=MatPos{ima}(i,2)+(burst(ima+1)*vitfv{ima-1}(i)); |
---|
| 379 | MatPos{ima+1}(i,3)=t{ima}(i); |
---|
| 380 | end |
---|
| 381 | |
---|
| 382 | for j=1:size(XPart{ima+1},2)-1 |
---|
| 383 | MatPos{ima+1}(j+size(MatPos{ima},1),1)=XPart{ima+1}(j); |
---|
| 384 | MatPos{ima+1}(j+size(MatPos{ima},1),2)=YPart{ima+1}(j); |
---|
| 385 | MatPos{ima+1}(j+size(MatPos{ima},1),3)=t{ima+1}(j); |
---|
| 386 | end |
---|
| 387 | |
---|
| 388 | |
---|
| 389 | result{ima}=track(MatPos{ima+1},0.15); |
---|
| 390 | |
---|
| 391 | izero=1; |
---|
| 392 | for itest=1:1:size(result{ima},1)-1 |
---|
| 393 | if result{ima}(itest+1,4)==result{ima}(itest,4) |
---|
| 394 | vitu{ima}(izero,1)=(result{ima}(itest+1,1)-result{ima}(itest,1))/burst(ima+1); |
---|
| 395 | vitu{ima}(izero,2)=result{ima}(itest,4); |
---|
| 396 | vitv{ima}(izero,1)=(result{ima}(itest+1,2)-result{ima}(itest,2))/burst(ima+1); |
---|
| 397 | vitv{ima}(izero,2)=result{ima}(itest,4); |
---|
| 398 | MatPos{ima+2}(izero,1)=result{ima}(itest,1); |
---|
| 399 | MatPos{ima+2}(izero,2)=result{ima}(itest,2); |
---|
| 400 | izero=izero+1; |
---|
| 401 | end |
---|
| 402 | end |
---|
| 403 | |
---|
| 404 | i=vitu{ima}(1,2):1:vitu{ima}(end,2) |
---|
| 405 | |
---|
| 406 | vitfu{ima}(:,1)=vitfu{ima-1}(i,1)+vitu{ima}(:,1); |
---|
| 407 | vitfv{ima}(:,1)=vitfv{ima-1}(i,1)+vitv{ima}(:,1); |
---|
| 408 | vitfu{ima}(:,2)=vitu{ima}(:,2); |
---|
| 409 | vitfv{ima}(:,2)=vitv{ima}(:,2); |
---|
| 410 | |
---|
| 411 | vitfu{ima-1}=vitfu{ima-1}(i,1); |
---|
| 412 | vitfu{ima-1}(:,2)=i; |
---|
| 413 | vitfv{ima-1}=vitfv{ima-1}(i,1); |
---|
| 414 | vitfv{ima-1}(:,2)=i; |
---|
| 415 | i=1:1:size(vitfu{ima-1},1) |
---|
| 416 | xpos=MatPos{2}(i,1) |
---|
| 417 | ypos=MatPos{2}(i,2) |
---|
| 418 | end |
---|
| 419 | end |
---|
| 420 | |
---|
| 421 | |
---|
| 422 | |
---|
| 423 | figure |
---|
| 424 | hold on |
---|
| 425 | plot(MatPos{1}(:,1),MatPos{1}(:,2),'r+') |
---|
| 426 | plot(MatPos{2}(:,1),MatPos{2}(:,2),'b+') |
---|
| 427 | plot(MatPos{4}(:,1),MatPos{4}(:,2),'y+') |
---|
| 428 | quiver(xpos(:),ypos(:),vitfu{1}(:,1),vitfv{1}(:,1),'g') |
---|
| 429 | quiver(MatPos{4}(:,1),MatPos{4}(:,2),vitfu{2}(:,1),vitfv{2}(:,1),'k') |
---|
| 430 | legend('particules image 1','particules image 2', 'particules image 3','vitesse 1-2 (cm/s)','vitesse 2-3 (cm/s)'); |
---|
| 431 | xlabel('x (cm)'); |
---|
| 432 | ylabel('y (cm)'); |
---|
| 433 | title('Position et vitesse (cm/s) des particules') |
---|
| 434 | |
---|
| 435 | |
---|
| 436 | for i=1:size(vitfu{end},1) |
---|
| 437 | vitfuadd(i)=0; |
---|
| 438 | vitfvadd(i)=0; |
---|
| 439 | end |
---|
| 440 | |
---|
| 441 | |
---|
| 442 | |
---|
| 443 | for i=1:1:size(vitfu{end}(:,1)) |
---|
| 444 | |
---|
| 445 | for j=1:nbfield-1 |
---|
| 446 | vitfuadd(i)= vitfuadd(i)+vitfu{j}(i,1); |
---|
| 447 | vitfvadd(i)= vitfvadd(i)+vitfv{j}(i,1); |
---|
| 448 | xpos1(i)=MatPos{1}(i,1); |
---|
| 449 | ypos1(i)=MatPos{1}(i,2); |
---|
| 450 | xpos2(i)=MatPos{2}(i,1); |
---|
| 451 | ypos2(i)=MatPos{2}(i,2); |
---|
| 452 | |
---|
| 453 | end |
---|
| 454 | end |
---|
| 455 | sizexpos1=size(xpos1) |
---|
| 456 | |
---|
| 457 | vitfumoy=vitfuadd./(nbfield-1) |
---|
| 458 | vitfvmoy=vitfvadd./(nbfield-1) |
---|
| 459 | |
---|
| 460 | testresult1=result{1} |
---|
| 461 | testresult2=result{2} |
---|
| 462 | |
---|
| 463 | if nbfield>2 |
---|
| 464 | figure |
---|
| 465 | hold on |
---|
| 466 | plot(MatPos{1}(:,1),MatPos{1}(:,2),'r+') |
---|
| 467 | plot(MatPos{2}(:,1),MatPos{2}(:,2),'b+') |
---|
| 468 | quiver(xpos2(:),ypos2(:),vitfumoy(:),vitfvmoy(:),'g') |
---|
| 469 | legend('particules image 1','particules image 2', 'vitesse moyenne (cm/s)'); |
---|
| 470 | xlabel('x (cm)'); |
---|
| 471 | ylabel('y (cm)'); |
---|
| 472 | title('Position et vitesse (cm/s) des particules') |
---|
| 473 | |
---|
| 474 | else |
---|
| 475 | |
---|
| 476 | figure |
---|
| 477 | hold on |
---|
| 478 | plot(MatPos{1}(:,1),MatPos{1}(:,2),'r+') |
---|
| 479 | plot(MatPos{2}(:,1),MatPos{2}(:,2),'b+') |
---|
| 480 | quiver(MatPos{2}(:,1),MatPos{2}(:,2),vitfu{1}(:),vitfv{1}(:),'g') |
---|
| 481 | legend('particules image 1','particules image 2','vitesse 1-2 (cm/s)'); |
---|
| 482 | xlabel('x (cm)'); |
---|
| 483 | ylabel('y (cm)'); |
---|
| 484 | title('Position et vitesse (cm/s) des particules') |
---|
| 485 | |
---|
| 486 | vitfumoy=vitfu{1}; |
---|
| 487 | vitfvmoy=vitfv{1}; |
---|
| 488 | |
---|
| 489 | end |
---|
| 490 | |
---|
| 491 | VitData.NbDim=2; |
---|
| 492 | VitData.NbCoord=2; |
---|
| 493 | VitData.CoordType='phys'; |
---|
| 494 | VitData.dt=0.0185; |
---|
| 495 | VitData.CoordUnit='cm'; |
---|
| 496 | VitData.Z=0; |
---|
| 497 | VitData.ListDimName={'nb_vectors'}; |
---|
| 498 | VitData.DimValue=size(vitfumoy,2); |
---|
| 499 | VitData.ListVarName={'X' 'Y' 'U' 'V' 'F'}; |
---|
| 500 | VitData.VarDimIndex={[1] [1] [1] [1] [1]}; |
---|
| 501 | VitData.ListVarAttribute={'Role'}; |
---|
| 502 | VitData.Role={'coord_x' 'coord_y' 'vector_x' 'vector_y' 'warnflag'}; |
---|
| 503 | |
---|
| 504 | if nbfield>2 |
---|
| 505 | VitData.X=size(MatPos{4},1); |
---|
| 506 | VitData.Y=size(MatPos{4},2); |
---|
| 507 | else |
---|
| 508 | VitData.X=size(MatPos{2},1); |
---|
| 509 | VitData.Y=size(MatPos{2},2); |
---|
| 510 | end |
---|
| 511 | |
---|
| 512 | VitData.U=size(vitfumoy,2); |
---|
| 513 | VitData.V=size(vitfvmoy,2); |
---|
| 514 | VitData.Style='plane'; |
---|
| 515 | VitData.Time=[198.5203 198.5203]; |
---|
| 516 | VitData.Action=Series.Action; |
---|
| 517 | |
---|
| 518 | if nbfield>2 |
---|
| 519 | VitData.X=MatPos{4}(:,1)'; |
---|
| 520 | VitData.Y=MatPos{4}(:,2)'; |
---|
| 521 | else |
---|
| 522 | VitData.X=MatPos{2}(:,1)'; |
---|
| 523 | VitData.Y=MatPos{2}(:,2)'; |
---|
| 524 | end |
---|
| 525 | |
---|
| 526 | VitData.U=vitfumoy(:)'; |
---|
| 527 | VitData.V=vitfvmoy(:)'; |
---|
| 528 | |
---|
| 529 | if length(VitData.ListVarName) >= 4 & isequal(VitData.ListVarName(1:4), {'X' 'Y' 'U' 'V'}) |
---|
| 530 | VitData.ListAttribute={'nb_coord','nb_dim','dt','pixcmx','pixcmy','hart','civ','fix'}; |
---|
| 531 | VitData.nb_coord=2; |
---|
| 532 | VitData.nb_dim=2; |
---|
| 533 | VitData.dt=0.018; |
---|
| 534 | VitData.absolut_time_T0=0; |
---|
| 535 | VitData.pixcmx=1; %pix per cm (1 by default) |
---|
| 536 | VitData.pixcmy=1; %pix per cm (1 by default) |
---|
| 537 | VitData.hart=0; |
---|
| 538 | if isequal(VitData.CoordType,'px') |
---|
| 539 | VitData.civ=1; |
---|
| 540 | else |
---|
| 541 | VitData.civ=0; |
---|
| 542 | end |
---|
| 543 | VitData.fix=0; |
---|
| 544 | VitData.ListVarName(1:4)={'vec_X' 'vec_Y' 'vec_U' 'vec_V'}; |
---|
| 545 | VitData.vec_X=VitData.X; |
---|
| 546 | VitData.vec_Y=VitData.Y; |
---|
| 547 | VitData.vec_U=VitData.U; |
---|
| 548 | VitData.vec_V=VitData.V; |
---|
| 549 | end |
---|
| 550 | currentdir=pwd;%store the current working directory |
---|
| 551 | [Path_ima,Name]=fileparts(filebase);%Path of the image files (.civ) |
---|
| 552 | cd(Path_ima);%move to the directory of the images: needed to create the result dir by 'mkdir' |
---|
| 553 | dircur=pwd; %current working directory |
---|
| 554 | [m1,m2,m3]=mkdir('TRACK_test') |
---|
| 555 | cd(currentdir) |
---|
| 556 | [filename_nc,idetect]=name_generator(filebase,num_i1(1),num_j1(1),'.nc','_i_j1-j2',1,num_i1(1),num_j1(2),'TRACK_test') |
---|
| 557 | error=struct2nc(filename_nc,VitData); %save result file |
---|
| 558 | if isequal(error,0) |
---|
| 559 | [filename_nc ' written'] |
---|
| 560 | else |
---|
| 561 | warndlg_uvmat(error,'ERROR') |
---|
| 562 | end |
---|
| 563 | |
---|