- Timestamp:
- Jan 3, 2012, 12:58:52 AM (13 years ago)
- Location:
- trunk/src
- Files:
-
- 14 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/src/civ.m
r355 r356 4646 4646 end 4647 4647 end 4648 %'nomtype2pair': creates nomencalture for index pairs knowing the image nomenclature 4649 %--------------------------------------------------------------------- 4650 % [nom_type_pair]=nomtype2pair(nom_type,Dti,Dtj); 4651 %--------------------------------------------------------------------- 4652 4653 % OUTPUT: 4654 %nom_type_nc 4655 4656 %--------------------------------------------------------------------- 4657 % INPUT: 4658 % 'nom_type': string defining the kind of nomenclature used: 4659 %nom_type='': constant name [filebase ext] (default output if 'nom_type' is undefined) 4660 %nom_type='*': the same file [filebase ext] contains successive fields (ex avi movies) 4661 %nom_type='_i': series of files with a single index i preceded by '_'(e.g. 'aa_45.png'). 4662 %nom_type='#' series of indexed images wich is not series_i [filebase index ext], e.g. 'aa045.jpg' or 'aa45.tif' 4663 %nom_type='_i_j' matrix of files with two indices i and j separated by '_'(e.g. 'aa_45_2.png') 4664 %nom_type='_i1-i2' from pairs from a single index (e.g. 'aa_45-47.nc') 4665 %nom_type='_i_j1-j2'pairs of j indices (e.g. 'aa_45_2-3.nc') 4666 %nom_type='_i1-i2_j' pairs of i indices (e.g. 'aa_45-46_2.nc') 4667 %nom_type='#a','#A', with a numerical index and an index letter(e.g.'aa045b.png'), OBSOLETE (replaced by 'series_i_j') 4668 %nom_type='%03d' or '%04d', series of indexed images with numbers completed with zeros to 3 or 4 digits, e.g.'aa045.tif' 4669 %nom_type='_%03d', '_%04d', or '_%05d', series of indexed images with _ and numbers completed with zeros to 3, 4 or 5 digits, e.g.'aa_045.tif' 4670 %nom_type='raw_SMD', same as '#a' but with no extension ext='', OBSOLETE 4671 %nom_type='#_ab' from pairs of '#a' images (e.g. 'aa045bc.nc'), ext='.nc', OBSOLETE (replaced by 'netc_2D') 4672 %nom_type='%3dab' from pairs of '%3da' images (e.g. 'aa045bc.nc'), ext='.nc', OBSOLETE (replaced by 'netc_2D') 4673 % Dti: ~=0 if i index pairs are used 4674 % Dtj: ~=0 if i index pairs are used 4675 4676 function [nom_type_pair]=nomtype2pair(nom_type,Dti,Dtj) 4677 4678 %determine nom_type_nc: 4679 nom_type_pair=[];%default 4680 if ischar(nom_type) 4681 switch nom_type 4682 case {'_i_j'} 4683 if Dtj>0 || Dtj<0 4684 nom_type_pair='_i_j1-j2'; 4685 if Dti>0 || Dti<0 4686 nom_type_pair='_i1-i2_j1-j2'; 4687 end 4688 elseif Dti>0 || Dti<0 4689 nom_type_pair='_i1-i21_j'; 4690 else 4691 nom_type_pair='_i_j'; 4692 end 4693 case {'_i1-i2_j'} 4694 if Dtj>0 || Dtj<0 4695 nom_type_pair='_i1-i2_j1-j2'; 4696 else 4697 nom_type_pair='_i1-i2_j'; 4698 end 4699 case {'i_j1-j2'} 4700 if Dti>0 || Dti<0 4701 nom_type_pair='_i1-i2_j1-j2'; 4702 else 4703 nom_type_pair='_i1-i2_j'; 4704 end 4705 case {'i1-i2_j1-j2'} 4706 nom_type_pair='_i1-i2_j1-j2'; 4707 case '#a' 4708 if Dtj>0 || Dtj<0 4709 nom_type_pair='#_ab'; 4710 end 4711 otherwise 4712 if Dti>0 || Dti<0 4713 nom_type_pair='_i1-i2'; 4714 end 4715 end 4716 end 4717 -
trunk/src/civ_matlab.m
r346 r356 723 723 SubRangy(isub,2)=SubRangy(isub,2)+SizY/4; 724 724 else 725 [U_smooth_sub,U_tps_sub]=tps_coeff(X(ind_sel),Y(ind_sel),U(ind_sel),rho); 726 [V_smooth_sub,V_tps_sub]=tps_coeff(X(ind_sel),Y(ind_sel),V(ind_sel),rho); 725 726 [U_smooth_sub,U_tps_sub]=tps_coeff([X(ind_sel) Y(ind_sel)],U(ind_sel),rho); 727 [V_smooth_sub,V_tps_sub]=tps_coeff([X(ind_sel) Y(ind_sel)],V(ind_sel),rho); 727 728 UDiff=U_smooth_sub-U(ind_sel); 728 729 VDiff=V_smooth_sub-V(ind_sel); … … 751 752 % interpolation-smoothing is done again with the selected vectors 752 753 else 753 [U_smooth_sub,U_tps_sub]=tps_coeff( X(ind_sel(ind_ind_sel)),Y(ind_sel(ind_ind_sel)),U(ind_sel(ind_ind_sel)),rho);754 [V_smooth_sub,V_tps_sub]=tps_coeff( X(ind_sel(ind_ind_sel)),Y(ind_sel(ind_ind_sel)),V(ind_sel(ind_ind_sel)),rho);754 [U_smooth_sub,U_tps_sub]=tps_coeff([X(ind_sel(ind_ind_sel)) Y(ind_sel(ind_ind_sel))],U(ind_sel(ind_ind_sel)),rho); 755 [V_smooth_sub,V_tps_sub]=tps_coeff([X(ind_sel(ind_ind_sel)) Y(ind_sel(ind_ind_sel))],V(ind_sel(ind_ind_sel)),rho); 755 756 U_smooth(ind_sel(ind_ind_sel))=U_smooth(ind_sel(ind_ind_sel))+U_smooth_sub; 756 757 V_smooth(ind_sel(ind_ind_sel))=V_smooth(ind_sel(ind_ind_sel))+V_smooth_sub; -
trunk/src/find_file_series.m
r354 r356 1 %'find_file_series': check the content o nf an input fieldand find the corresponding file series1 %'find_file_series': check the content of an input file and find the corresponding file series 2 2 %-------------------------------------------------------------------------- 3 3 % function [RootPath,RootFile,i1_series,i2_series,j1_series,j2_series,NomType,FileType,Object]=find_file_series(fileinput) -
trunk/src/geometry_calib.m
r341 r356 1209 1209 Tinput=CalibData.rotate; 1210 1210 end 1211 T=rotate_points(Tinput);%display translate_points GUI and get shiftparameters1211 T=rotate_points(Tinput);%display rotate_points GUI to introduce rotation parameters 1212 1212 CalibData.rotate=T; 1213 1213 set(handles.geometry_calib,'UserData',CalibData) -
trunk/src/open_uvmat.m
r343 r356 1 %------------------------------------------------------------------------ 2 % open with uvmat the field selected in the list of 'civ/status' or 'series/check_data_files' 1 % 'open_uvmat': open with uvmat the field selected in the list of 'civ/status' or 'series/check_data_files' 2 %------------------------------------------------------------------------ 3 %function open_uvmat(hObject, eventdata) 4 % 5 % INPUT: 6 % hObject: handle of uicontrol object containing the list 7 % eventdata: not used 3 8 function open_uvmat(hObject, eventdata) 4 9 %------------------------------------------------------------------------ -
trunk/src/plot_field.m
r334 r356 1180 1180 end 1181 1181 1182 %'proj_grid': project fields with unstructured coordinantes on a regular grid 1183 % ------------------------------------------------------------------------- 1184 % function [A,rangx,rangy]=proj_grid(vec_X,vec_Y,vec_A,rgx_in,rgy_in,npxy_in) 1185 1186 1187 function [A,rangx,rangy]=proj_grid(vec_X,vec_Y,vec_A,rgx_in,rgy_in,npxy_in) 1188 if length(vec_Y)<2 1189 msgbox_uvmat('ERROR','less than 2 points in proj_grid.m'); 1190 return; 1191 end 1192 diffy=diff(vec_Y); %difference dy=vec_Y(i+1)-vec_Y(i) 1193 index=find(diffy);% find the indices of vec_Y after wich a change of horizontal line occurs(diffy non zero) 1194 if isempty(index); msgbox_uvmat('ERROR','points aligned along abscissa in proj_grid.m'); return; end;%points aligned% A FAIRE: switch to line plot. 1195 diff2=diff(diffy(index));% diff2 = fluctuations of the detected vertical grid mesh dy 1196 if max(abs(diff2))>0.001*abs(diffy(index(1))) % if max(diff2) is larger than 1/1000 of the first mesh dy 1197 % the data are not regularly spaced and must be interpolated on a regular grid 1198 if exist('rgx_in','var') & ~isempty (rgx_in) & isnumeric(rgx_in) & length(rgx_in)==2% positions imposed from input 1199 rangx=rgx_in; % first and last positions 1200 rangy=rgy_in; 1201 % npxy=npxy_in; 1202 dxy(1)=1/(npxy_in(1)-1);%grid mesh in y 1203 dxy(2)=1/(npxy_in(2)-1);%grid mesh in x 1204 dxy(1)=(rangy(2)-rangy(1))/(npxy_in(1)-1);%grid mesh in y 1205 dxy(2)=(rangx(2)-rangx(1))/(npxy_in(2)-1);%grid mesh in x 1206 else % interpolation grid automatically determined 1207 rangx(1)=min(vec_X); 1208 rangx(2)=max(vec_X); 1209 rangy(2)=min(vec_Y); 1210 rangy(1)=max(vec_Y); 1211 dxymod=sqrt((rangx(2)-rangx(1))*(rangy(1)-rangy(2))/length(vec_X)); 1212 dxy=[-dxymod/4 dxymod/4];% increase the resolution 4 times 1213 end 1214 xi=[rangx(1):dxy(2):rangx(2)]; 1215 yi=[rangy(1):dxy(1):rangy(2)]; 1216 [XI,YI]=meshgrid(xi,yi);% creates the matrix of regular coordinates 1217 A=griddata_uvmat(vec_X,vec_Y,vec_A,xi,yi'); 1218 A=reshape(A,length(yi),length(xi)); 1219 else 1220 x=vec_X(1:index(1));% the set of abscissa (obtained on the first line) 1221 indexend=index(end);% last vector index of line change 1222 ymax=vec_Y(indexend+1);% y coordinate AFTER line change 1223 ymin=vec_Y(index(1)); 1224 %y=[vec_Y(index) ymax]; % the set of y ordinates including the last one 1225 y=vec_Y(index); 1226 y(length(y)+1)=ymax; 1227 nx=length(x); %number of grid points in x 1228 ny=length(y); % number of grid points in y 1229 B=(reshape(vec_A,nx,ny))'; %vec_A reshaped as a rectangular matrix 1230 [X,Y]=meshgrid(x,y);% positions X and Y also reshaped as matrix 1231 1232 %linear interpolation to improve the image resolution and/or adjust 1233 %to prescribed positions 1234 test_interp=1; 1235 if exist('rgx_in','var') & ~isempty (rgx_in) & isnumeric(rgx_in) & length(rgx_in)==2% positions imposed from input 1236 rangx=rgx_in; % first and last positions 1237 rangy=rgy_in; 1238 npxy=npxy_in; 1239 else 1240 rangx=[vec_X(1) vec_X(nx)];% first and last position found for x 1241 % rangy=[ymin ymax]; 1242 rangy=[max(ymax,ymin) min(ymax,ymin)]; 1243 if max(nx,ny) <= 64 & isequal(npxy_in,'np>256') 1244 npxy=[8*ny 8*nx];% increase the resolution 8 times 1245 elseif max(nx,ny) <= 128 & isequal(npxy_in,'np>256') 1246 npxy=[4*ny 4*nx];% increase the resolution 4 times 1247 elseif max(nx,ny) <= 256 & isequal(npxy_in,'np>256') 1248 npxy=[2*ny 2*nx];% increase the resolution 2 times 1249 else 1250 npxy=[ny nx]; 1251 test_interp=0; % no interpolation done 1252 end 1253 end 1254 if test_interp==1%if we interpolate 1255 xi=[rangx(1):(rangx(2)-rangx(1))/(npxy(2)-1):rangx(2)]; 1256 yi=[rangy(1):(rangy(2)-rangy(1))/(npxy(1)-1):rangy(2)]; 1257 [XI,YI]=meshgrid(xi,yi); 1258 A = interp2(X,Y,B,XI,YI); 1259 else %no interpolation for a resolution higher than 256 1260 A=B; 1261 XI=X; 1262 YI=Y; 1263 end 1264 end -
trunk/src/rotate_points.m
r74 r356 1 %'rotate_points': associated with GUI rotate_points.fig to display message boxes, for error, warning or input calls2 % rotate_points(title,display)3 % 1 %'rotate_points': associated with GUI rotate_points.fig to introduce (2D) rotation parameters 2 %------------------------------------------------------------------------ 3 % function T=rotate_points(Tinput) 4 4 % OUTPUT: 5 % answer (text string)= 'yes', 'No', 'cancel', or the text string introduced as input 5 % T=vector size(1,3) 6 % T(1): rotation angle 7 % T(2): x coordiante of rotation axis 8 % T(3): y coordiante of rotation axis 6 9 % 7 10 %INPUT: 8 % title: string indicating the type of message box: 9 % title= 'INPUT_TXT','CONFIMATION' ,'ERROR', 'WARNING', 'INPUT_Y-N', default = 'INPUT_TXT' (the title is displayed in the upper bar of the fig). 10 % if title='INPUT_TXT', input data is asked in an edit box 11 % if title='CONFIMATION'', 'ERROR', 'WARNING', the figure remains opened until a button 'OK' is pressed 12 % if title='INPUT_Y-N', an answer Yes/No is requested 13 % display, displayed text 14 % default_answer: default answer in the edit box (only used with title='INPUT_TXT') 11 % Tinput: like T, used to prefil the GUI edit boxs 15 12 16 13 function varargout = rotate_points(varargin) 17 18 % Last Modified by GUIDE v2.5 05-Jan-2010 15:10:1019 14 20 15 % Begin initialization code - DO NOT EDIT -
trunk/src/set_col_vec.m
r315 r356 1 %'set_col_vec': sets the color code for vectors depending on a scalar vec_C and parameters given by the struct colcode 1 %'set_col_vec': % sets the color code for vectors depending on a scalar and input parameters (used for plot_field) 2 %----------------------------------------------------------------------- 2 3 %function [colorlist,col_vec,minC,ColCode1,ColCode2,maxC]=colvec(colcode,vec_C) 4 %----------------------------------------------------------------------- 3 5 %OUTPUT 4 6 %colorlist(nb,3); %list of nb colors -
trunk/src/tps_coeff.m
r246 r356 1 %'tps_uvmat': calculate thin plate shell coefficients 1 %'tps_coeff': calculate the thin plate spline (tps) coefficients 2 % (ref fasshauer@iit.edu MATH 590 ? Chapter 19 32) 3 % this interpolation/smoothing minimises a linear combination of the squared curvature 4 % and squared difference form the initial data. 5 % This function calculates the weight coefficients U_tps of the N sites where 6 % data are known. Interpolated data are then obtained as the matrix product 7 % EM*U_tps where the matrix EM is obtained by the function tps_eval. 8 % The spatial derivatives are obtained as EMDX*U_tps and EMDY*U_tps, where 9 % EMDX and EMDY are obtained from the function tps_eval_dxy. 2 10 %------------------------------------------------------------------------ 3 %fasshauer@iit.edu MATH 590 ? Chapter 19 32 4 % X,Y initial coordiantes 5 % XI vector, YI column vector for the grid of interpolation points 6 function [U_smooth,U_tps]=tps_coeff(X,Y,U,rho) 11 % [U_smooth,U_tps]=tps_coeff(ctrs,U,rho) 12 %------------------------------------------------------------------------ 13 % OUPUT: 14 % U_smooth: values of the quantity U at the N centres after smoothing 15 % U_tps: tps weights of the centres 16 17 %INPUT: 18 % ctrs: Nxs matrix representing the postions of the M centers, sources of the tps (s=space dimension) 19 % U: Nx1 column vector representing the initial values of the considered scalar at the centres ctrs 20 % rho: smoothing parameter: the result is smoother for larger rho. 21 22 23 function [U_smooth,U_tps]=tps_coeff(ctrs,U,rho) 7 24 %------------------------------------------------------------------------ 8 25 %rho smoothing parameter 9 % ep = 1; 10 X=reshape(X,[],1); 11 Y=reshape(Y,[],1); 12 N=numel(X); 13 rhs = reshape(U,[],1); 14 rhs = [rhs; zeros(3,1)]; 15 ctrs = [X Y];% coordinates of measurement sites, radial base functions are located at the measurement sites 16 %ctrs = dsites;%radial base functions are located at the measurement sites 26 % X=reshape(X,[],1); 27 % Y=reshape(Y,[],1); 28 % N=numel(X); 29 % rhs = reshape(U,[],1); 30 U = [U; zeros(3,1)]; 31 % ctrs = [X Y];% coordinates of measurement sites, radial base functions are located at the measurement sites 17 32 EM = tps_eval(ctrs,ctrs); 18 % DM_data = DistanceMatrix(ctrs,ctrs);%2D matrix of distances between spline centres (=initial points) ctrs19 % IM_sites = tps(1,DM_data);%values of thin plate at site points20 % PM=[ones(N,1) ctrs];21 % EM = [IM_sites PM];22 %IM = IM_sites + rho*eye(size(IM_sites));% rho=1/(2*omega) , omega given by fasshauer;23 24 %IM=[IM PM; [PM' zeros(3,3)]];25 33 RhoMat=rho*eye(N,N);% rho=1/(2*omega) , omega given by fasshauer; 26 34 RhoMat=[RhoMat zeros(N,3)]; 27 35 PM=[ones(N,1) ctrs]; 28 29 36 IM=[EM+RhoMat; [PM' zeros(3,3)]]; 30 %fprintf('Condition number estimate: %e\n',condest(IM)) 31 %DM_eval = DistanceMatrix(epoints,ctrs);%2D matrix of distances between extrapolation points epoints and spline centres (=site points) ctrs 32 %EM = tps(ep,DM_eval);%values of thin plate 33 %PM = [ones(size(epoints,1),1) epoints]; 34 %EM = [EM PM]; 35 U_tps=(IM\rhs); 36 % PM = [ones(size(dsites,1),1) dsites]; 37 37 U_tps=(IM\U); 38 38 U_smooth=EM *U_tps; -
trunk/src/tps_eval.m
r273 r356 1 % EM: MxN matrix whose i,j position contains the Euclidean2 % distance between the i-th data site and j-th center3 function EM = tps_eval(dsites,ctrs) 4 [M,s] = size(dsites); [N,s] = size(ctrs); 5 EM = zeros(M,N); 6 7 % calculate distance matrix: accumulate sum of squares of coordinate differences 8 % The ndgrid command produces two MxN matrices: 9 % Dsite, consisting of N identical columns (each containing 10 % the d-th coordinate of the M data sites) 11 % Ctrs, consisting of M identical rows (each containing 12 % the d-th coordinate of the N centers) 13 for d=1:s 14 [Dsites,Ctrs] = ndgrid(dsites(:,d),ctrs(:,d)); 15 EM = EM + (Dsites-Ctrs).^2;%EM=square of distance matrices 16 end 1 %'tps_eval': calculate the thin plate spline (tps) interpolation at a set of points 2 % see tps_ceff for more information 3 %------------------------------------------------------------------------ 4 % function EM = tps_eval(dsites,ctrs) 5 %------------------------------------------------------------------------ 6 % OUPUT: 7 % EM: Mx(N+s) matrix representing the contributions at the M sites 8 % from unit sources located at each of the N centers, + (s+1) columns 9 % representing the contribution of the linear gradient part. 10 % 11 %INPUT: 12 %dsites: Nxs matrix representing the postions of the N 'observation' sites, with s the space dimension 13 %ctrs: Mxs matrix representing the postions of the M centers, sources of the tps, 14 % 15 % related functions: 16 % tps_coeff, tps_eval_dxy 17 17 18 % calculate tps 19 np=find(EM~=0); 20 EM(np) = EM(np).*log(EM(np))/2;%= tps formula r^2 log(r) (EM=r^2) 21 22 % add linear gradient part: 23 EM = [EM ones(M,1) dsites]; 18 function EM = tps_eval(dsites,ctrs) 19 [M,s] = size(dsites); [N,s] = size(ctrs); 20 EM = zeros(M,N); 21 22 % calculate distance matrix: accumulate sum of squares of coordinate differences 23 % The ndgrid command produces two MxN matrices: 24 % Dsite, consisting of N identical columns (each containing 25 % the d-th coordinate of the M data sites) 26 % Ctrs, consisting of M identical rows (each containing 27 % the d-th coordinate of the N centers) 28 for d=1:s 29 [Dsites,Ctrs] = ndgrid(dsites(:,d),ctrs(:,d)); 30 EM = EM + (Dsites-Ctrs).^2;%EM=square of distance matrices 31 end 32 33 % calculate tps 34 np=find(EM~=0); 35 EM(np) = EM(np).*log(EM(np))/2;%= tps formula r^2 log(r) (EM=r^2) 36 37 % add linear gradient part: 38 EM = [EM ones(M,1) dsites]; -
trunk/src/tps_eval_dxy.m
r247 r356 1 % 'DXYMatrix': calculate the matrix of thin-plate shell derivatives 2 % 3 % function DMXY = DXYMatrix(dsites,ctrs) 1 %'tps_eval_dxy': calculate the derivatives of thin plate spline (tps) interpolation at a set of points (limited to the 2D case) 2 %------------------------------------------------------------------------ 3 % function [DMX,DMY] = tps_eval_dxy(dsites,ctrs) 4 %------------------------------------------------------------------------ 5 % OUTPUT: 6 % DMX: Mx(N+3) matrix representing the contributions to the X 7 % derivatives at the M sites from unit sources located at each of the N 8 % centers, + 3 columns representing the contribution of the linear gradient part. 9 % DMY: idem for Y derivatives 4 10 % 5 11 % INPUT: 6 % dsites: M x s matrix of interpolation site coordinates (s=space dimension )12 % dsites: M x s matrix of interpolation site coordinates (s=space dimension=2 here) 7 13 % ctrs: N x s matrix of centre coordinates (initial data) 8 14 % 9 % OUTPUT: 10 % DMXY: Mx(N+1+s)xs matrix corresponding to M interpolation sites and 11 % N centres, with s=space dimension, DMXY(:,:,k) gives the derivatives 12 % along dimension k (=x, y,z) after multiplication by the N+1+s tps sources. 15 % related functions: 16 % tps_coeff, tps_eval 17 13 18 function [DMX,DMY] = tps_eval_dxy(dsites,ctrs) 14 19 %% matrix declarations -
trunk/src/translate_points.m
r36 r356 1 %'translate_points': associated with GUI translate_points.fig to display message boxes, for error, warning or input calls 2 % translate_points(title,display) 3 % 1 %'translate_points': associated with GUI translate_points.fig to display translation parameters 2 %------------------------------------------------------------------------ 3 % function T=translate_points(Tinput) 4 %------------------------------------------------------------------------ 4 5 % OUTPUT: 5 % answer (text string)= 'yes', 'No', 'cancel', or the text string introduced as input6 % 6 % T=vector size(1,3), representing the translation components along x,y,z 7 7 8 %INPUT: 8 % title: string indicating the type of message box: 9 % title= 'INPUT_TXT','CONFIMATION' ,'ERROR', 'WARNING', 'INPUT_Y-N', default = 'INPUT_TXT' (the title is displayed in the upper bar of the fig). 10 % if title='INPUT_TXT', input data is asked in an edit box 11 % if title='CONFIMATION'', 'ERROR', 'WARNING', the figure remains opened until a button 'OK' is pressed 12 % if title='INPUT_Y-N', an answer Yes/No is requested 13 % display, displayed text 14 % default_answer: default answer in the edit box (only used with title='INPUT_TXT') 9 % Tinput: like T, used to prefil the GUI edit boxs 15 10 16 11 function varargout = translate_points(varargin) 17 18 % Last Modified by GUIDE v2.5 05-Jan-2010 19:31:3319 12 20 13 % Begin initialization code - DO NOT EDIT -
trunk/src/view_field.m
r329 r356 130 130 end 131 131 num_i1_mask=mod(num_i1-1,MaskData.NbSlice)+1; 132 [MaskName,mdetect]=name_generator(MaskData.Base,num_i1_mask,num_j1,'.png',MaskData.NomType); 132 [RootPath,RootFile]=fullfile(MaskData.Base); 133 MaskName=fullfile_uvmat(RootPath,'',RootFile,'.png',MaskData.NomType,num_i1_mask,[],num_j1); 134 %[MaskName,mdetect]=name_generator(MaskData.Base,num_i1_mask,num_j1,'.png',MaskData.NomType); 133 135 huvmat=get(handles.mask_test,'parent'); 134 136 UvData=get(huvmat,'UserData'); -
trunk/src/xml2struct.m
r324 r356 1 % 'xml2struct': read an xml file as a Matlab structure, converts numeric character strings into numbers 2 %----------------------------------------------------------------------- 3 % function s=xml2struct(filename) 4 % 5 % OUTPUT: 6 % s= Matlab structure corresponding to the input xml file 7 % 8 % INPUT: 9 % filename: name of the xml file 10 1 11 function s=xml2struct(filename) 2 % structure parser, converts numeric character strings into numbers3 4 12 t=xmltree(filename); 5 13 ss=convert(t);
Note: See TracChangeset
for help on using the changeset viewer.